scu oj 4443

题目: http://www.bnuoj.com/v3/contest_show.php?cid=6865#problem/H


解法: 位置和数字可以转化成二分图模型。必须是完备匹配才有解。主要是这个限制关系比较难找。 然后就是字典序最小的二分图匹配了。

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 52;
int uN,vN;
int g[MAXN][MAXN];
int linker[MAXN];
bool used[MAXN];
int match[MAXN];
bool vis[MAXN];
bool dfs(int u){
    for(int v=1; v<=vN; v++){
        if(g[u][v] && !vis[v]&&!used[v]){
            used[v] = true;
            if(linker[v] == -1 || dfs(linker[v])){
                linker[v] = u;
                return true;
            }
        }
    }
    return false;
}
bool check(int st){
    int res = 0;
    memset(linker, -1, sizeof(linker));
    for(int u=st; u<=uN; u++){
        memset(used, false, sizeof(used));
        if(!dfs(u)) return false;
    }
    return true;
}
int MIN[100];
int MAX[100];
int L[100], R[100];
int n;
void init(){
    memset(g, 0, sizeof(g));
    for(int i=1; i<=n; i++){
        L[i] = MIN[i] = 1;
        R[i] = MAX[i] = n;
    }
}
int main(){
    int a,b,c;
    int m1,m2;
    while(scanf("%d %d %d", &n, &m1, &m2) != EOF){
        init();
        uN = vN = n;
        for(int i=1; i<=m1; i++){
            scanf("%d %d %d", &a, &b, &c);
            for(int j=a; j<=b; j++){
                MIN[j] = max(MIN[j], c);
                L[c] = max(L[c], a);
                R[c] = min(R[c], b);
            }
        }
        for(int i=1; i<=m2; i++){
            scanf("%d %d %d", &a, &b, &c);
            for(int j=a; j<=b; j++){
                MAX[j] = min(MAX[j], c);
                L[c] = max(L[c], a);
                R[c] = min(R[c], b);
            }
        }
        for(int i=1; i<=n; i++){
            for(int j=MIN[i]; j<=MAX[i]; j++){
                if(L[j] <= i && i <= R[j])
                    g[i][j] = 1;
            }
        }
        if(check(1)){
           memset(vis, false, sizeof(vis));
           for(int i=1; i<=n; i++){
               for(int j=1; j<=n; j++){
                    if(g[i][j] && !vis[j]){
                        vis[j] = true;
                        if(check(i+1)){
                            printf("%d%c", j, " \n"[i==n]);
                            break;
                        }
                        vis[j] = false;
                    }
               }
           }
        }
        else cout<<-1<<endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值