解拉普拉斯方程的方法

解拉普拉斯方程(Laplace equation)是数学物理中的一个经典问题,广泛应用于电场、引力场、流体力学等领域。拉普拉斯方程的形式如下:

∇ 2 ϕ = 0 \nabla^2 \phi = 0 2ϕ=0

其中,(\nabla^2) 是拉普拉斯算符,表示空间中的二阶偏导数:

∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} 2=x22+y22+z22

在二维空间中,拉普拉斯方程为:

∂ 2 ϕ ∂ x 2 + ∂ 2 ϕ ∂ y 2 = 0 \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 x22ϕ+y22ϕ=0

其中, ϕ ( x , y ) \phi(x, y) ϕ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值