bzoj 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)

11 篇文章 0 订阅
5 篇文章 0 订阅

题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相同,求互不相同的合法的字符串L的数量

第一眼看就没啥思路....瞅了一眼题解,是KMP优化DP,然后再用矩阵优化DP

思路还是不难的,首先用KMP求出原字符串的next数组,再用next转移

定义f[i][j]是当前X串匹配到了第i位,已经匹配到了字符串A的第j位

每次在X串的第j+1位填上一个数c,那么X串现在最长能匹配上A串的位置

就是从第j+1位一直往前跳next,直到碰到一个位置a[k]==a[j]或k==0也匹配不到

int k=i+1;
for(k=i+1;k>0&&a[k]!=c;k=nxt[k])
    ;
pw.mp[k][i]++;
    

这是一个连续的过程,上面是构建矩阵的核心代码(原来的代码太丑了我改了一下)

至于为什么要这么跳呢,这是一个类似于"贪心"的过程,但并不是我们主动去贪心

因为我们要保证每次转移的位置都是正确的

然后发现N<=1e9有点大,矩阵乘法优化一下即可

#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long 
#define N 23
#define ui unsigned int
#define inf 0x3f3f3f3f
using namespace std;
//re
int n,len;
ui mod;
char str[N];
int a[N],nxt[N];
struct mtx{
    ui mp[N][N];
    friend mtx operator *(const mtx &s1,const mtx &s2)
    {
        mtx ret;memset(&ret,0,sizeof(ret));
        for(int i=0;i<len;i++)
            for(int j=0;j<len;j++)
                for(int k=0;k<len;k++) 
                    (ret.mp[i][j]+=(s1.mp[i][k]*s2.mp[k][j])%mod)%=mod;
        return ret;
    }
    mtx qpow(mtx &ans,mtx &x,int y)
    {
        while(y){
            if(y&1) ans=x*ans;
            x=x*x;y>>=1;
        }
    }
}M;
void get_kmp()
{
    int i=1,j=0;
    nxt[1]=0;
    while(i<=len)
        if(j==0||a[i]==a[j])
            i++,j++,nxt[i]=j;
        else j=nxt[j];
}

int main()
{
    scanf("%d%d%u",&n,&len,&mod);
    scanf("%s",str+1);
    for(int i=1;i<=len;i++) a[i]=str[i]-'0';
    get_kmp();
    mtx pw;memset(&pw,0,sizeof(pw));
    for(int i=0;i<len;i++)
        for(int c=0;c<=9;c++)
        {
            if(i==len-1&&a[len]==c) continue;
            int k=i+1;
            for(k=i+1;k>0&&a[k]!=c;k=nxt[k]);
            pw.mp[k][i]++;
        }
    mtx ret;memset(&ret,0,sizeof(ret));
    ret.mp[0][0]=1;
    M.qpow(ret,pw,n);
    ui ans=0;
    for(int i=0;i<len;i++)
        (ans+=ret.mp[i][0])%=mod;
    printf("%u\n",ans);
    return 0;
}





 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值