题目描述
二叉树的前序、中序、后序遍历的定义: 前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树; 中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树; 后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。 给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)。
输入描述:
两个字符串,其长度n均小于等于26。 第一行为前序遍历,第二行为中序遍历。 二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。
输出描述:
输入样例可能有多组,对于每组测试样例, 输出一行,为后序遍历的字符串。
示例1
输入
ABC BAC FDXEAG XDEFAG
输出
BCA XEDGAF
代码:其实原理非常简单,就和自己用手写的方式建立二叉树一样,关键是可以用递归的方法来进行实现。
#include <iostream> #include <string> #include <stdlib.h> using namespace std; typedef struct Tree { char a; struct Tree * left; struct Tree * right; }Node,*BTree; void build(BTree &T,string str1,string str2) //str1为前序,str2为后序; { if (str1.length()==0 && str2.length()==0) T = NULL; else { T = (Node *)malloc(sizeof(Node)); T->a = str1[0]; int pos = str2.find(str1[0]); string str_L1 = str1.substr (1,pos); string str_L2 = str2.substr (0,pos); string str_R1 = str1.substr (pos+1,str1.length()); string str_R2 = str2.substr (pos+1,str2.length()); //cout<<str_L1<<" "<<str_L2<<" "<<str_R1<<" "<<str_R2<<endl; build(T->left,str_L1,str_L2); build(T->right,str_R1,str_R2); } } void PostOrder( BTree T ) { if (T) { PostOrder(T->left); // 遍历左子树 PostOrder(T->right);// 遍历右子树 cout<<T->a; // 访问结点 } } int main() { BTree T; string str1; string str2; while (cin>>str1) { cin >> str2; build(T,str1,str2); PostOrder(T); cout<<endl; } return 0; }