根据中序遍历和前序遍历输出后序遍历,自己的代码

题目描述

二叉树的前序、中序、后序遍历的定义: 前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树; 中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树; 后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。 给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)。

输入描述:

两个字符串,其长度n均小于等于26。
第一行为前序遍历,第二行为中序遍历。
二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。

输出描述:

输入样例可能有多组,对于每组测试样例,
输出一行,为后序遍历的字符串。
示例1

输入

ABC
BAC
FDXEAG
XDEFAG

输出

BCA
XEDGAF
代码:其实原理非常简单,就和自己用手写的方式建立二叉树一样,关键是可以用递归的方法来进行实现。
#include <iostream>
#include <string>
#include <stdlib.h>

using namespace std;

typedef struct Tree
{
    char a;
    struct  Tree * left;
    struct  Tree * right;


}Node,*BTree;

void build(BTree &T,string str1,string str2)           //str1为前序,str2为后序;
{
    if (str1.length()==0 && str2.length()==0)
        T = NULL;
    else
    {
        T = (Node *)malloc(sizeof(Node));
        T->a = str1[0];
        int pos = str2.find(str1[0]);
        string str_L1 = str1.substr (1,pos);
        string str_L2 = str2.substr (0,pos);
        string str_R1 = str1.substr (pos+1,str1.length());
        string str_R2 = str2.substr (pos+1,str2.length());
        //cout<<str_L1<<" "<<str_L2<<" "<<str_R1<<" "<<str_R2<<endl;
        build(T->left,str_L1,str_L2);
        build(T->right,str_R1,str_R2);
    }
}

void PostOrder( BTree T )
{
 if (T)
    {
       PostOrder(T->left); // 遍历左子树
       PostOrder(T->right);// 遍历右子树
       cout<<T->a;          // 访问结点
    }
}

int main()
{
   BTree T;
   string str1;
   string str2;
   while (cin>>str1)
   {
     cin >> str2;
     build(T,str1,str2);
     PostOrder(T);
     cout<<endl;
   }
   return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值