- 博客(72)
- 收藏
- 关注
原创 深度学习网络模型梳理
2015年,He等人采用残差网络(Residual Networks,ResNet)来解决梯度消失的问题。ResNet的主要特点是跨层连接,它通过引入捷径连接技术(shortcut connections)将输入跨层传递并与卷积的结果相加。在ResNet中只有一个池化层,它连接在最后一个卷积层后面。ResNet使得底层的网络能够得到充分训练,准确率也随着深度的加深而得到显著提升。将深度为152层的ResNet用于LSVRC-15的图像分类比赛中,它获得了第1名的成绩。
2022-09-25 23:20:38 600
原创 补充说明11
localStorage.setItem(“name”, “张三”);(2)在jquery中获取一组单选框被选中的值。(1)在jquery中获取被选选项值。(2)选择下拉选项后获取被选选项值。(2)选择后获取本组单选框的值。(2)获取复选框是否被选中。(3)复选框被选中后获取值。在b.html中取出姓名。在a.html保存姓名。
2023-04-23 17:41:46 555 1
原创 web期末
实验四1<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><title>Oscar List</title><link href="css/main.css" rel="stylesheet" type=
2023-04-23 17:17:30 548
原创 【Python数据可视化】使用geoplotlib绘制地理空间数据
❤️❤️需要数据集的可以评论。Geoplotlib 是地理空间数据可视化的开源Python库,包含了大量的地理空间可视化操作,并且支持硬件加速。提示:以下是本篇文章正文内容,下面案例可供参考主要问题是在安装geoplotlib,其余就是简单导入数据画图。
2022-12-26 17:24:39 2794 3
原创 大数据平台之Hadoop复习详细知识点
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统( Distributed File System),其中一个组件是HDFS(Hadoop Distributed File System)。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集
2022-12-23 10:57:39 787
原创 NumPy快速入门教程
提示:以下是本篇文章正文内容,下面案例可供参考NumPy完全支持面向对象的方法,我们再夸奖一次 ndarray。我们知道 ndarray 是一个类,拥有许多方法和属性。它的许多方法都由最外层的NumPy命名空间中的函数镜像,允许程序员在他们喜欢的范例中进行编码。这种灵活性使NumPy数组方言和NumPy ndarray 类成为在Python中使用的多维数据交换的 首选 对象。
2022-12-15 19:39:55 530
原创 Python Pandas时间序列详解
顾名思义,时间序列(time series),就是由时间构成的序列,它指的是在一定时间内按照时间顺序测量的某个变量的取值序列,比如一天内的温度会随时间而发生变化,或者股票的价格会随着时间不断的波动,这里用到的一系列时间,就可以看做时间序列。时间序列包含三种应用场景,分别是:特定的时刻(timestamp),也就是时间戳;固定的日期(period),比如某年某月某日;时间间隔(interval),每隔一段时间具有规律性;在处理时间序列的过程中,我们一般会遇到两个问题,第一,如何创建时间序列;
2022-12-15 18:06:40 693
原创 Pandas merge合并操作
Pandas 提供的 merge() 函数能够进行高效的合并操作,这与 SQL 关系型数据库的 MERGE 用法非常相似。从字面意思上不难理解,merge 翻译为“合并”,指的是将两个 DataFrame 数据表按照指定的规则进行连接,最后拼接成一个新的 DataFrame 数据表。
2022-12-15 15:22:24 293
原创 Pandas groupby分组操作详解
在数据分析中,经常会遇到这样的情况:根据某一列(或多列)标签把数据划分为不同的组别,然后再对其进行数据分析。比如,某网站对注册用户的性别或者年龄等进行分组,从而研究出网站用户的画像(特点)。在Pandas 中,要完成数据的分组操作,需要使用 groupby() 函数,它和 SQL 的GROUP BY操作非常相似。在划分出来的组(group)上应用一些统计函数,从而达到数据分析的目的,比如对分组数据进行聚合、转换,或者过滤。
2022-12-15 14:58:59 1752 1
原创 Pandas loc/iloc用法详解
在数据分析过程中,很多时候需要从数据表中提取出相应的数据,而这么做的前提是需要先“索引”出这一部分数据。虽然通过 Python 提供的索引操作符"[]“和属性操作符”."可以访问 Series 或者 DataFrame 中的数据,但这种方式只适应与少量的数据,为了解决这一问题,Pandas 提供了两种类型的索引方式来实现数据的访问。本节就来讲解一下,如何在 Pandas 中使用 loc 函数和 iloc 函数。
2022-12-14 23:16:14 624
原创 Python Pandas处理字符串(方法详解)
Pandas 提供了一系列的字符串函数,因此能够很方便地对字符串进行处理。在本节,我们使用 Series 对象对常用的字符串函数进行讲解。
2022-12-14 22:55:30 158
转载 Pandas去重函数:drop_duplicates()
去重”通过字面意思不难理解,就是删除重复的数据。在一个数据集中,找出重复的数据删并将其删除,最终只保存一个唯一存在的数据项,这就是数据去重的整个过程。删除重复数据是数据分析中经常会遇到的一个问题。通过数据去重,不仅可以节省内存空间,提高写入性能,还可以提升数据集的精确度,使得数据集不受重复数据的影响。Panda DataFrame 对象提供了一个数据去重的函数 drop_duplicates(),本节对该函数的用法做详细介绍。
2022-12-14 22:28:15 607
转载 Pandas sorting排序
使用 sort_index() 方法对行标签排序,指定轴参数(axis)或者排序顺序。或者可以对 DataFrame 进行排序。默认情况下,按照行标签序排序。
2022-12-14 22:06:21 148
转载 Pandas iteration遍历
Pandas iteration 遍历遍历是众多编程语言中必备的一种操作,比如 Python 语言通过 for 循环来遍历列表结构。那么 Pandas 是如何遍历 Series 和 DataFrame 结构呢?我们应该明确,它们的数据结构类型不同的,遍历的方法必然会存在差异。对于 Series 而言,您可以把它当做一维数组进行遍历操作;而像 DataFrame 这种二维数据表结构,则类似于遍历 Python 字典。
2022-12-14 21:42:58 294
原创 Matplotlib中的“plt”和“ax”,设置大小刻度,设置实线和虚线方格线
如果将Matplotlib绘图和我们平常画画相类比,可以把Figure想象成一张纸(一般被称之为画布),Axes代表的则是纸中的一片区域(当然可以有多个区域,这是后续要说到的subplots),上一张更形象一点的图。
2022-12-01 23:22:31 5346
原创 matplotlib
python matplotlib你对投资股票感兴趣。你下载了“五大”公司的股价:亚马逊、谷歌、苹果、Facebook和微软。3.绘图
2022-11-27 00:15:49 296 1
原创 机器学习-kmeans-调包和手写源代码
聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。KMeans算法通过试着将样本分离到 个方差相等的组中来对数据进行聚类,从而最小化目标函数 (见下文)。该算法要求指定集群的数量。
2022-11-18 09:57:53 968 1
原创 使用 TF-IDF 算法将文本向量化
TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF是词频(Term Frequency),IDF是逆文本频率指数(Inverse Document Frequency)。提示:以下是本篇文章正文内容,下面案例可供参考TF-IDF算法介绍及实现TF-IDF算法详解百度百科——tf-idf。
2022-11-12 17:18:32 4798 3
原创 深度学习基于LSTM的商品评论多分类实战
我的前面博客有吴恩达深度学习进行情感二分类分析的案例,建议看一下,讲的比较基础。这篇博客数据预处理时用到的一些函数在那篇博客讲过,这里就不再赘述。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考。我们的思想拥有持久性。LSTM就是具备了这一特性。
2022-10-14 21:16:16 1438
原创 CNN卷积神经网络模型预测Fashion数据Tensorflow代码
CNN卷积神经网络,Fashion是数据集,Tensorflow代码以上就是CNN卷积神经网络模型预测Fashion数据集的代码。
2022-10-13 15:20:49 721 1
原创 深度学习模型理解-CNN-手写数据字代码
图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。非严格意义上来讲,下图中红框框起来的部分便可以理解为一个滤波器,即带着一组固定权重的神经元。多个滤波器叠加便成了卷积层。
2022-09-29 00:25:22 1214 10
原创 20. 有效的括号
给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效。有效字符串需满足:左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一个对应的相同类型的左括号。
2022-09-28 20:16:16 118
原创 17.电话号码的字母组合
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
2022-09-22 22:16:00 579 1
原创 15. 三数之和
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i!= j、i!= k 且 j!= k ,同时还满足 nums[i] + nums[j] + nums[k] == 0。请你返回所有和为 0 且不重复的三元组。注意:答案中不可以包含重复的三元组。
2022-09-22 13:06:39 640 1
原创 13. 罗马数字转整数
罗马数字包含以下七种字符 : I, V, X, L,C,D 和 M。字符 数值I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II。27 写做 XXVII , 即为 XX + V + II。通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4。
2022-09-14 17:29:58 94 1
原创 力扣-12. 整数转罗马数字
示例 3 : 输入 : num = 9 输出 : "IX" 示例 4 : 输入 : num = 58 输出 : "LVIII" 解释 : L = 50 , V = 5 , III = 3. 示例 5 : 输入 : num = 1994 输出 : "MCMXCIV" 解释 : M = 1000 , CM = 900 , XC = 90 , IV = 4.
2022-09-14 16:59:28 802 3
原创 力扣-11. 盛最多水的容器
给定一个长度为 n 的整数数组 height。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i])。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。复杂度分析时间复杂度:O(N)O(N),双指针总计最多遍历整个数组一次。空间复杂度:O(1)O(1),只需要额外的常数级别的空间。
2022-09-13 23:12:30 267 1
原创 力扣-9. 回文数
给你一个整数 x ,如果 x 是一个回文整数,返回 true;否则,返回 false。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。例如,121 是回文,而 123 不是。
2022-09-12 17:58:26 151
原创 力扣-8. 字符串转换整数 (atoi)
请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C++ 中的 atoi 函数)。函数 myAtoi(string s) 的算法如下:读入字符串并丢弃无用的前导空格检查下一个字符(假设还未到字符末尾)为正还是负号,读取该字符(如果有)。确定最终结果是负数还是正数。如果两者都不存在,则假定结果为正。读入下一个字符,直到到达下一个非数字字符或到达输入的结尾。字符串的其余部分将被忽略。
2022-09-12 17:10:45 265
原创 力扣-7. 整数反转-中等
给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。
2022-09-12 16:40:22 406 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人