Conda虚拟环境的复制和迁移

文章介绍了四种复制和迁移Conda虚拟环境的方法:通过`requirements.txt`、`environment.yml`、使用`conda-pack`工具以及直接复制`envs`目录下的环境文件夹。每种方法都有其适用场景和注意事项,例如`conda-pack`适合断网环境,而直接复制`envs`目录要求源和目标计算机平台相同。
摘要由CSDN通过智能技术生成

Conda虚拟环境的复制和迁移

在本机复制Conda虚拟环境

conda create --name 新环境名 --clone 旧环境名

相同操作系统之间复制环境

方法一:requirements.txt

这个方法不推荐,因为只会导出你使用pip安装的依赖包,不会导出虚拟环境所依赖的包,并不适用于虚拟环境的迁移的应用场景。

事实上,此方法比较适用于,已经明确知道依赖哪些包,我们只需要package信息的情况,如写项目文档,告诉别人运行我这个系统必须安装哪些依赖包。而忽略虚拟环境本身的依赖环境。

pip freeze > requirements.txt  # 生成requirements.txt
pip install -r requirements.txt  # 从requirements.txt安装依赖

方法二 : Environment.yml

跨平台和操作系统共享项目环境也可以使用 -export 选项生成 environment.yml 文件来完成。规范列表和 environment.yml 文件之间的区别在于 environment.yml 文件不是特定于操作系统的,而是使用 YAML 格式化的。只列出包名,conda根据包名搭建环境。另一个区别是 -export 还包括使用 pip 安装的包,而 spec 列表不包括。要导出 environment.yml 文件:

conda env export environment.yml
  • 请注意,如果路径中已有 environment.yml 文件,conda 将覆盖该文件。创建环境:
conda env create -f environment.yml

方法三:Conda Pack

Conda-pack 是一个命令行工具,用于打包 conda 环境,其中包括环境中安装的包的所有二进制文件。此法支持断网环境下使用。Environment.yml 是从python依赖包各自的存储库中下载包来创建环境,缺点当然是网速慢、容易下载失败等等。此法就没有这个问题。

请记住,conda-pack 是特定于平台和操作系统的,目标计算机必须具有与源计算机相同的平台和操作系统。
要安装 conda-pack,请确保您处于 root 或 base 环境中,以便它在子环境中可用。 Conda-pack 可在 conda-forge 或 PyPI 获得。

conda-forge:

conda install -c conda-forge conda-pack

PyPI:

pip install conda-pack
打包环境:
# Pack environment my_env into my_env.tar.gz
$ conda pack -n my_env

# Pack environment my_env into out_name.tar.gz
$ conda pack -n my_env -o out_name.tar.gz

# Pack environment located at an explicit path into my_env.tar.gz
$ conda pack -p /explicit/path/to/my_env
复制环境到其他电脑上:
# Unpack environment into directory `my_env`
$ mkdir -p my_env
$ tar -xzf my_env.tar.gz -C my_env

# Use Python without activating or fixing the prefixes. Most Python
# libraries will work fine, but things that require prefix cleanups
# will fail.
$ ./my_env/bin/python

# Activate the environment. This adds `my_env/bin` to your path
$ source my_env/bin/activate

# Run Python from in the environment
(my_env) $ python

# Cleanup prefixes from in the active environment.
# Note that this command can also be run without activating the environment
# as long as some version of Python is already installed on the machine.
(my_env) $ conda-unpack

方法四:直接复制envs目录下的虚拟环境文件夹

在断网环境下,我们也可以直接从源电脑(以下统称为src电脑)上直接将虚拟环境整个复制到目标电脑(以下统称为target电脑)上。前提是target计算机必须具有与src计算机相同的平台和操作系统。

1、target电脑上安装相同版本的Anaconda。
2、从src电脑把envs文件夹中需要复制的虚拟环境文件夹复制到target电脑上,位置随便放。

我们可以通过以下命令来查看src电脑上虚拟环境文件夹的存放路径:

conda env list

image-20230426143639701

已上图为例,E:\ProgramData\Anaconda\envs\new_name 就是虚拟环境new_name的存储路径。我们将它直接复制到target电脑上即可。

image-20230426143959988

3、在target电脑上,进入conda命令行,使用如下命令:
conda config --add envs_dirs %复制到target电脑上的envs路径%

注意: 这里的路径是目标虚拟环境文件夹的上级目录!

举个例子:

我将上图中的new_name复制到了target电脑上,并重命名为:env_pybd。路径为G:\anoconda_envs\env_pybd

image-20230426152249543

那么我应该用conda执行命令:

conda config --add envs_dirs G:\anoconda_envs\

运行成功后,会往 C:\user%当前用户名%\.condarc 里面添加一条envs_dirs记录,如下图所示:

image-20230426152437166

再运行

conda env list

就可以看到,我们已经复制成功了:

image-20230426152756755

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

切糕师学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值