Python利用exifread库获取图片的经纬度,拍摄时间,拍摄地点等信息

博客介绍利用Python的exifread库解析图片的exif元数据信息,通过API将经纬度坐标转换为结构化地址。程序可获取拍摄图片的时间、经纬度和精确到街道的地点信息,并展示了图A和图B的获取结果,代码和数据可在GitHub下载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

智能手机或平板如果在拍照时开启定位服务,照片中就会记录拍照位置信息和拍摄时间。这时我们可以先利用exifread库解析图片的exif元数据信息,再利用API把经纬度坐标转换为结构化地址输出。

如果图片含有相应信息,如下程序可以获得拍摄图片的时间,图片所在的经纬度,拍摄图片的地点(可以精确到街道信息)。

程序

import exifread
import re
import json
import requests


def latitude_and_longitude_convert_to_decimal_system(*arg):
    return float(arg[0]) + ((float(arg[1]) + (float(arg[2].split('/')[0]) / float(arg[2].split('/')[-1]) / 60)) / 60)


def find_GPS_image(pic_path):
    GPS = {}
    date = ''
    with open(pic_path, 'rb') as f:
        tags = exifread.process_file(f)
        for tag, value in tags.items():
            if re.match('GPS GPSLatitudeRef', tag):
                GPS['GPSLatitudeRef'] = str(value)
            elif re.match('GPS GPSLongitudeRef', tag):
                GPS['GPSLongitudeRef'] = str(value)
            elif re.match('GPS GPSAltitudeRef', tag):
                GPS['GPSAltitudeRef'] = str(value)
            elif re.match('GPS GPSLatitude', tag):
                try:
                    match_result = re.match('\[(\w*),(\w*),(\w.*)/(\w.*)\]', str(value)).groups()
                    GPS['GPSLatitude'] = int(match_result[0]), int(match_result[1]), int(match_result[2])
                except:
                    deg, min, sec = [x.replace(' ', '') for x in str(value)[1:-1].split(',')]
                    GPS['GPSLatitude'] = latitude_and_longitude_convert_to_decimal_system(deg, min, sec)
            elif re.match('GPS GPSLongitude', tag):
                try:
                    match_result = re.match('\[(\w*),(\w*),(\w.*)/(\w.*)\]', str(value)).groups()
                    GPS['GPSLongitude'] = int(match_result[0]), int(match_result[1]), int(match_result[2])
                except:
                    deg, min, sec = [x.replace(' ', '') for x in str(value)[1:-1].split(',')]
                    GPS['GPSLongitude'] = latitude_and_longitude_convert_to_decimal_system(deg, min, sec)
            elif re.match('GPS GPSAltitude', tag):
                GPS['GPSAltitude'] = str(value)
            elif re.match('.*Date.*', tag):
                date = str(value)
    return {'GPS_information': GPS, 'date_information': date}


def find_address_from_GPS(GPS):
    #使用Geocoding API把经纬度坐标转换为结构化地址。
    secret_key = 'zbLsuDDL4CS2U0M4KezOZZbGUY9iWtVf'
    if not GPS['GPS_information']:
        return '该照片无GPS信息'
    lat, lng = GPS['GPS_information']['GPSLatitude'], GPS['GPS_information']['GPSLongitude']
    baidu_map_api = "http://api.map.baidu.com/geocoder/v2/?ak={0}&callback=renderReverse&location={1},{2}s&output=json&pois=0".format(
        secret_key, lat, lng)
    response = requests.get(baidu_map_api)
    content = response.text.replace("renderReverse&&renderReverse(", "")[:-1]
    baidu_map_address = json.loads(content)
    formatted_address = baidu_map_address["result"]["formatted_address"]
    province = baidu_map_address["result"]["addressComponent"]["province"]
    city = baidu_map_address["result"]["addressComponent"]["city"]
    district = baidu_map_address["result"]["addressComponent"]["district"]
    return formatted_address, province, city, district


if __name__ == '__main__':
    file_name = "003.jpg"
    GPS_info = find_GPS_image(pic_path=file_name)
    address = find_address_from_GPS(GPS=GPS_info)
    print("Time taken: ")
    print(GPS_info['date_information'] + "\n")

    print("Longitude and Latitude :")
    print(GPS_info['GPS_information']['GPSLongitude'], GPS_info['GPS_information']['GPSLongitudeRef'])
    print(GPS_info['GPS_information']['GPSLatitude'], GPS_info['GPS_information']['GPSLatitudeRef'] + "\n")

    print("Address: ")
    print(address)
    

结果

图A

在这里插入图片描述
图A获取的图片信息为:

Time taken : 2018:11:03 12:28:31
Longitude and Latitude :
116.32040277777777 E
39.982875 N
Address: (‘北京市海淀区海淀南路1号’, ‘北京市’, ‘北京市’, ‘海淀区’)

图B

在这里插入图片描述
图B获取的图片信息为:

Time taken : 2002:12:08 12:00:00
Longitude and Latitude :
117.10391233333333 E
36.25671386111111 N
Address : (‘山东省泰安市岱岳区’, ‘山东省’, ‘泰安市’, ‘岱岳区’)

以上代码和数据可以去我的GitHub网站下载。后续会继续整理总结有趣小项目。

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值