Stein算法求最大公约数

本文介绍了Stein算法(又称除法-free的欧几里得算法)来求解最大公约数,该算法避免了直接的除法操作。通过分析奇偶性和位操作,递归地将问题规模缩小,直到找到最大公约数。详细算法步骤包括当两数皆为偶数、一数为偶数、两数均为奇数的情况,并提供了相关参考资料。
摘要由CSDN通过智能技术生成

提起求最大公约数数的算法,那么很多人都会想起辗转相除法,即欧几里德算法,算法思想如下:

给定两个整数a,b,求a和b的最大公约数,若d是a和b的公约数,则a也是b和a%b的公约数,相反如果a是b和a%b的公约数,那么b也是a和b的公约数,利用这个思想,算法实现如下:


int gcd(int a, int b) {
    int t, r;
    if(a < b){
        t = a;
        a = b;
        b = t;
    }
    while(b != 0) {
        r = b;
        b = a % b;
        a = r;
    }
    return a;

}

对于机器字长类型的整数,这个算法是比较高效的,但是当处理大整数(bigint)类型时,需要除法运算需要再几个字长之前处理,那么就会浪费CPU时间了,Stein算法中使用移位和减的方式来处理,没有除法运算,所以在求最大公约数时是比较高效的,Stein算法原理如下:

1.若a和b都是偶数,则记录下公约数2,然后都除2(即右移1位);

2.若其中一个数是偶数,则偶数除2,因为此时2不可能是这两个数的公约数了

3.若两个都是奇数,则a = |a-b|,b = min(a,b),因为若d是a和b的公约数,那么d也是a-b和min(a,b)的公约数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值