提起求最大公约数数的算法,那么很多人都会想起辗转相除法,即欧几里德算法,算法思想如下:
给定两个整数a,b,求a和b的最大公约数,若d是a和b的公约数,则a也是b和a%b的公约数,相反如果a是b和a%b的公约数,那么b也是a和b的公约数,利用这个思想,算法实现如下:
int gcd(int a, int b) {
int t, r;
if(a < b){
t = a;
a = b;
b = t;
}
while(b != 0) {
r = b;
b = a % b;
a = r;
}
return a;
}
对于机器字长类型的整数,这个算法是比较高效的,但是当处理大整数(bigint)类型时,需要除法运算需要再几个字长之前处理,那么就会浪费CPU时间了,Stein算法中使用移位和减的方式来处理,没有除法运算,所以在求最大公约数时是比较高效的,Stein算法原理如下:
1.若a和b都是偶数,则记录下公约数2,然后都除2(即右移1位);
2.若其中一个数是偶数,则偶数除2,因为此时2不可能是这两个数的公约数了
3.若两个都是奇数,则a = |a-b|,b = min(a,b),因为若d是a和b的公约数,那么d也是a-b和min(a,b)的公约数。