Stein算法
伪代码:
Stein算法(假设0<=b<a):
r←0
while b>0
do if a偶,b偶 then a←a>>1 b←b>>1 r←r+1
else if a偶,b奇 then a←a>>1
else if a奇,b偶 then b←b>>1
else if a奇,b奇 then a←(a-b)>>1
if a<b then 交换a,b
return a<<r
r←0
while b>0
do if a偶,b偶 then a←a>>1 b←b>>1 r←r+1
else if a偶,b奇 then a←a>>1
else if a奇,b偶 then b←b>>1
else if a奇,b奇 then a←(a-b)>>1
if a<b then 交换a,b
return a<<r
- unsigned MaxDivisor(unsigned a, unsigned b)
- {
- unsigned c = 0;
- while(1)
- {
- // 退出条件
- if(a==0)
- return b << c;
- else if(b == 0)
- return a << c;
- // 为提高速度,采用位的与运算,避免用取模判断奇偶
- if(!(a & 1) && !(b & 1)) //a,b 都是偶数
- {
- a >>= 1; b >>= 1; ++c;
- }
- else if(!(a & 1) && (b & 1)) //a偶 b奇
- {
- a >>= 1;
- }
- else if((a & 1) && !(b & 1)) //a奇 b偶
- {
- b >>= 1;
- }
- else if((a & 1) && (b & 1)) //a,b都是奇数
- {
- unsigned tmp = a>b?b:a; //取较小的一个
- a = a>b?a-b:(b-a); //绝对差值
- b = tmp;
- }
- }
- }
2.a,b奇偶性不同,则偶数的2可以去掉,因为不可能和奇数有公约数
3.a,b均为奇,此时可能有奇数的公约数
a = k * x,b = k* y (k为奇)
a = a - b = k * (x - y)
不断减小其他因子,直到最后a = b,相减a = 0,则b为k,再左移(即乘上之前的2^c)