
其他
文章平均质量分 73
_忽如远行客
人一能之,已百之;人十能之,己千之.果能此道矣,虽愚必明,虽柔必强。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
DIN模型学习笔记
模型背景用户在访问电商网站时,会表现出兴趣的多样性。但用户是否点击当前的商品或广告,很大程度上依赖于其历史行为,并且仅仅取决于历史行为中的一小部分。而在之前如Wide&Deep、DeepFM之类的CTR预估模型中,首先学习各个特征的embedding表示,将高维度稀疏数据转换为低维度的向量表示,然后学习低维的特征交互和高维的非线性关系。但是这些研究没有针对用户历史行为特征进行建模。DIN模型在这种背景下被提出,对用户历史行为特征进行建模,捕捉用户历史行为和当前商品之间的关联,更准确地进行推荐原创 2021-03-28 00:18:42 · 1058 阅读 · 1 评论 -
Python输入输出练习总结-牛客网
由于一些企业的笔试需要在代码里处理样例的输入输出,而不是像leetcode那样直接写函数就可以。因此在牛客网上进行了专项练习。下面就Python语言在处理输入时的一些常用函数。1、处理键盘输入:input()在Python3中,input() 函数接收任意类型的输入,将所有输入默认为字符串处理,并返回字符串string 类型。因此输入的数字需要转换类型。建议在键入时就进行类型转换,避免后续忘记。当仅接收一个整数输入时,可以直接写:a = int(input())利用input一次性输入多个原创 2021-03-26 17:00:58 · 2265 阅读 · 0 评论 -
NFM学习笔记
模型介绍由于FM模型只能以线性的方式学习两两特征之间的交互关系,无法捕捉现实数据的复杂结果。因此尽管DeepFM将FM和DNN并行设计,也无法很好地捕捉低阶特征。因此这篇文章提出了一种将FM融合进DNN的模型NFM(Neural Factorization Machines for Sparse Predictive Analytics)。FM模型中目标值的预测公式为:NFM模型的目标值预测公式为:可以看到,NFM用f(x)替代了FM模型中二阶隐向量内积的部分,即让f(x)更复杂,表原创 2021-03-24 21:40:42 · 241 阅读 · 0 评论 -
Wide&Deep模型学习笔记
Wide&Deep模型将浅层模型(Wide部分)的记忆能力和深层模型(Deep部分)的泛化能力结合起来,让推荐结果兼顾准确性和拓展性。1、Wide部分其中浅层模型的记忆能力指从历史数据中学到高频共现的特征组合的能力。这部分就是简单的线性模型:y=Wx+b。x表示基础特征和交叉特征。其中交叉特征代码实现2、Deep部分Deep部分是一个深度神经网络,将类别特征转化为低维稠密向量,让神经网络自主学习特征之间的交叉关系。...原创 2021-03-18 23:03:06 · 263 阅读 · 0 评论 -
DeepCrossing学习笔记
背景在搜索广告推荐领域中, 用户在输入搜索词之后, 搜索引擎在返回相关结果之外, 还会返回与搜索词相关的广告。Deep Crossing就是用于预测用户点击率CTR的模型。模型的输入包含类别型特征(如广告id)和数值型特征(如广告预算)。数据分析The Criteo Display Ads dataset 是kaggle上的一个CTR预估竞赛数据集。里面包含13个数值特征I1-I13和26个类别特征C1-C26。在将数据输入模型之前要进行简单的数据清洗:对于数值特征进行NaN填充、取对数处理原创 2021-03-16 22:50:20 · 279 阅读 · 0 评论 -
Git:windows下远程提交代码到私人仓库
在项目开发过程中,有时不便将代码在github公开,就可以建立private repository。但是我在本地仓库和远程私人仓库之间建立连接时遇到了一些问题,记录如下。本地仓库和在github上建立的公共仓库之间建立连接可以用:$ git remote add origin git@github.com:username/repo.git对于私人仓库如果也用上面的代码建立关联,会在执行"git pull"或“git push”的时候报错(ssh key已配置完成):Ent...原创 2020-10-30 21:47:44 · 863 阅读 · 0 评论 -
属性错误: model tensorboard.util has no attribute ..
在使用tensorboard的时候遇到如题所示的错误,运行pip list发现tensorboard和tensorflow都是1.5版本,讲道理不应该出现版本适配的错误。但是运行pip show tensorboard后 显示如下Name: tensorboardVersion: 2.2.2Summary: TensorBoard lets you watch Tensors FlowHome-page: https://github.com/tensorflow/tensorboa原创 2020-05-31 09:16:00 · 290 阅读 · 0 评论 -
import tensorflow时出现ImportError: DLL load failed: 找不到指定的模块
查找资料确定是版本问题,故在安装时指定版本安装,tensorflow不要安装很新的版本。可以尝试在python3.6版本下安装tensorflow1.5pip uninstall tensorflowpip install tensorflow==1.5原创 2020-05-30 23:55:59 · 347 阅读 · 0 评论 -
java String equals 和==的区别
在博客园上看到把这个知识点讲得很透彻的文章:云小七转载 2018-04-13 19:25:03 · 123 阅读 · 0 评论 -
C++输入与输出
找到一个不错的讲C++输入与输出的文章:c++输入与输出转载 2018-04-27 08:59:02 · 295 阅读 · 0 评论 -
linux终端终止当前进程
linux终端终止当前进程:caffe训练测试出错还终止不了...快捷键:Ctrl+c在命令行下起着终止当前执行程序的作用,Ctrl+d相当于exit命令,退出当前shellCtrl+s挂起当前shell(保护作用很明显哦)Ctrl+q解冻挂起的shell再不行就重新连接打开一个终端,reboot linux 或 kill 相关进程。转载fromhttp...转载 2018-08-16 10:41:56 · 27710 阅读 · 1 评论 -
vector作为参数的三种传参方式
vector作为参数的三种传参方式c++中常用的vector容器作为参数时,有三种传参方式,分别如下function1(std::vector<std::vector<int> > vec),传值 function2(std::vector<std::vector<int> >& vec),传引用 function3(std::v...转载 2018-12-16 22:06:04 · 680 阅读 · 0 评论 -
face++ 算法实习生 面试复盘
两周前去face++面试人脸识别组算法实习生,技术面没过被刷掉了(虽然聊得比较开心)打仗都是越打越顺的,重要的是需要复盘、总结、进而查漏补缺, 才能收割offer啊!因为岗位要求熟悉python语言以及熟练使用scikit-learn、numpy等库函数。于是在准备算法题的同时我把numpy库和scikit-learn中的比较重要的函数过了一遍。流程:1、进门在前台登记,等面试官提...原创 2018-12-24 20:19:48 · 789 阅读 · 0 评论 -
滴滴后台开发实习面经
元旦后去滴滴面试后台开发实习生,岗位主要应用语言是java,现简单记录总结。面试分三面,时间从3:30-6:00,每个面试官大概会问半个小时。一面:根据简历摸底基础知识,首先自我介绍。java基础:如何理解面向对象?继承和多态有什么区别和联系?数据结构:list和set的区别set为什么是无序不可重复的set和map有什么区别写出二叉树的前中后序遍历结果...原创 2019-01-11 22:08:22 · 2181 阅读 · 0 评论 -
win10浏览器如何访问ipv6网址
什么是ipv6?IPv6是下一版本的互联网协议,也可以说是下一代互联网的协议,它的提出最初是因为随着互联网的迅速发展,IPv4定义的有限地址空间将被耗尽,地址空间的不足必将妨碍互联网的进一步发展。为了扩大地址空间,拟通过IPv6重新定义地址空间。IPv6采用128位地址长度,几乎可以不受限制地提供地址。按保守方法估算IPv6实际可分配的地址,整个地球的每平方米面积上仍可分配1000多个地址。在...原创 2019-01-07 21:28:19 · 91673 阅读 · 1 评论 -
git报错集锦(不定时更新)
1、E325: 注意Aborting commit due to empty commit message.git commit时没有写注释,会报这个错误。加上注释即可。git commit -m "commmit existing files to remote"2、error: There was a problem with the editor '\usr\local\bin...原创 2019-08-16 17:34:42 · 307 阅读 · 0 评论 -
word 打出表示对一个参数估计的^值
在统计学中如对y_i的估计常常用来表示,在word中如何打出估计量上面的^呢?1、选中要在上面放^的字母,举个例子如:w2、在“开始”菜单栏里选中“带圈字符”此时弹出对话框,直接点确定:3、此时w变成了这个样子,右击选择“切换域代码”,w变成了这种形式将括号里第一项的“圈”改为“^”并将"^"设置为上标,此时原始w变成了再右击选择“切换域代码”得到可以看到w上面可...原创 2019-09-26 23:52:00 · 16304 阅读 · 2 评论 -
软件系统分析与设计考点记录
昨天考完张老师的软件系统分析与设计,自认成绩不佳,但于此分析,主要是对自己复习备考和答题状态的反思,但如果能给明年学弟学妹考试有一点指导作用那将是再好不过了。 再容我难过一分钟 ......考试题型分为选择题5道,判断题5道,简答题4道,建模题3道。其中选择、判断每题2分,简单建模每题10分。选择、判断题侧重考一些概念性知识,比如哪些属于business usecase等以及对建模的认识;原创 2018-01-13 10:40:59 · 414 阅读 · 0 评论