蓝桥杯必看 【手撕模板】三分钟带你上手算法模板(例题 + 套路总结) --> 差分

前言(必看)

本系列 暂无详细的 公式推导以及证明,
适合有一定知识基础的同学
目的是 通过分析例题、了解、总结套路
来达到举一反三 触类旁通的效果

1、差分使用场景以及核心思想

给出 n 个数,再给出 m 个询问,每个询问给出 l,r,x,要求你在 l 到 r 上每一个值都加上 x,而只给你 O(n) 的时间范围,怎么办?

如果暴力,时间复杂度就是 O(n^2)

如果线段树或者树状数组,时间复杂度就是 O(mlogn)

所以这里用差分,时间复杂度就是 O(n)

差分是在前缀和基础之上的延伸 ,通过处理差分数组 b 最后求 b 的 前缀和 从而达到降低时间复杂度的效果

下文统一 以 a 为前缀和数组b 为差分数组

2.1 一维差分

主要思路

给区间[l, r]中的每个数加上c

公式:B[l] += c, B[r + 1] -= c

例题

image-20220114194021335

例题源码

#include<iostream>

const int N  = 1e5 + 10;

int a[N], b[N];

using namespace std;
int m,n;
void insert(int l , int r , int c)
{
     b[l]   +=c;
     b[r + 1] -= c;
}

int main()
{

     cin >>  n >> m ;

     for(int i = 1; i <= n ; i ++ )           
     {
         cin >> a[i];
         insert(i,i ,a[i]);1}

     while(m -- )2{
         int l,r,c; 
         cin>> l >> r >> c;
         insert(l,r,c);
     }

     for( int i = 1; i <= n ; i ++ )       
     {
          a[i] = a[i - 1] + b[i];3printf("%d ",a[i]);
     }

     return 0;
}

模板+套路

(1)读入矩阵、同时求出差分数组 b

(2)根据题目要求,进行操作

(3)套用公式 求 前缀和数组 a

2.2 二维差分

思路

S[i, j] = 第i行j列格子左上部分所有元素的和
以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]

例题

image-20220114192716230

例题源码

#include<iostream>

using namespace std;

const int N = 1e3 + 10;

int m,n,q;

int a[N][N], b[N][N];

void insert(int x1,int y1,int x2, int y2 , int c)
{
    b[x1][y1] += c;
    b[x1][y2 + 1] -= c;
    b[x2 +1 ][y1] -= c;
    b[x2 + 1][y2 + 1] += c;//注意下标为2的都 + 1
}

int  main()
{
    cin>> n>>m>>q;
    for( int i = 1; i <= n ; i ++1for( int j = 1; j <= m ;  j  ++ )
        {
            cin>>a[i][j];
            insert(i,j,i,j,a[i][j]);//这里第五个参数是a[i][j]
        }
    
       
    while(q --)2{
        int x1,x2,y1,y2,c;
        cin >> x1  >> y1  >> x2 >>  y2 >>  c ;
        insert(x1,y1,x2,y2,c);
    }
    
   
    for( int i = 1; i <= n ; i ++ )
    {
        for( int j = 1; j <= m ;  j  ++ )
        {
            a[i][j] = a[i][j-1] + a[i - 1][j] - a[i - 1][j - 1] + b[i][j];3printf("%d ",a[i][j]);
        }
        printf("\n");
    }
        
            
            
            
            
    return 0;
}

模板+套路

(1)读入矩阵、根据原矩阵构造差分数组 b

(2)套入题目要求,进行操作

(3)套用二维前缀和公式 求差分数组的二维前缀和数组 a

a[i][j] = a[i][j-1] + a[i - 1][j] - a[i - 1][j - 1] + b[i][j]

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值