POJ 2096 概率DP入门

【题目链接】
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21521

【解题报告】
一共有n种bug,s个系统,每天发现一个bug(一共有无限多个bug,bug的种类和属于哪个系统是独立随机事件),问至少找齐
n种bug,每个系统至少找到一个bug的期望天数。

我们使用递推的方法来解决这道题目。
设dp[i][j]表示已找到n种bug,并且已有s个系统里有bug的期望。
假如再过一天我们找到一个bug,那么这是一个离散型随机变量。
下一个状态只可能是dp[i][j],dp[i+1][j],dp[i+1][j+1],dp[i][j+1]这四种状态中的一种。
于是我们知道dp[i][j]= P1*dp[i][j] + P2*dp[i+1][j] + P3*dp[i+1][j+1] + P4*[i][j+1]+1.
之所以+1是因为dp[i][j]这个状态比后面的状态多一天。

【参考代码】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
#include<iomanip>
using namespace std;

const int maxn=1010;
double dp[maxn][maxn];
int n,s;

//找到n种类型的bug,并且s个类型中至少有一个
int main()
{
      while( cin>>n>>s )
      {
            memset( dp,0,sizeof dp );
            dp[n][s]=0;
            for( int i=n;i>=0;i-- )
            {
                  for( int j=s;j>=0;j-- )
                  {
                        if( i==n && j==s )continue;
                        double p1=i*1.0/n,p2=j*1.0/s;
                        dp[i][j]+=dp[i][j+1]*p1*(1-p2) + dp[i+1][j]*(1-p1)*p2 + dp[i+1][j+1]*(1-p1)*(1-p2)+1;
                        dp[i][j]/=(1-p1*p2);
                  }
            }
            cout<<fixed<<setprecision(6)<<dp[0][0]<<endl;
      }

      return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值