一、定义
所谓的二叉搜索树,其实就是具有以下特定性质的二叉树:
1)每个节点都有一个关键码(key),关键码可以作为搜索依据,且所有节点的关键码都不能相同。
2)左子树上所有节点的关键码都小于根节点的关键码。
3)右子树上所有节点的关键码都大于根节点的关键码。
4)根节点的左右子树也都是二叉搜索树。
二、删除操作
二叉搜索树的删除有三种情况,一种是待删除节点没有孩子,一种是待删除节点只有左孩子或只有右孩子,一种是待删除节点既有左孩子又有右孩子。事实上,第一种情况可以概括到第二种情况中一并处理。
删除方法可见下图:
二、
代码
#pragma once
template<class K,class V>
struct BSTreeNode
{
BSTreeNode<K, V>* _left;
BSTreeNode<K, V>* _right;
K _key;
V _value;
BSTreeNode(const K& key, const V& value)
:_key(key)
, _value(value)
, _left(NULL)
, _right(NULL)
{}
};
template<class K,class V>
class BSTree
{
typedef BSTreeNode<K, V> Node;
public:
BSTree()
:_root(NULL)
{}
bool Insert(const K& key, const V& value)
{
if (_root == NULL)
{
_root = new Node(key, value);
return true;
}
Node* parent = NULL;
Node* cur = _root;
while (cur) //直到cur为空(因为cur已经给了parent,所以这里的意思是直到parent为叶子节点)
{
if (cur->_key < key) //插入的数较大
{
parent = cur;
cur = cur->_right; //cur向右走
}
else if (cur->_key>key) //插入的数较小
{
parent = cur;
cur = cur->_left; //cur向左走
}
else
{
return false;
}
}
if (key > parent->_key) //在parent的左右插入新节点
{
parent->_right = new Node(key, value);
}
else
{
parent->_left = new Node(key, value);
}
return true;
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key > key)
{
cur = cur->_left;
}
else if (cur->_key < key)
{
cur = cur->_right;
}
else
{
return cur; //返回指针
}
}
return NULL; //找不到时
}
bool Remove(const K& key)
{
Node* parent = NULL;
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key>key)
{
parent = cur;
cur = cur->_left;
}
else
{
break;
}
}
if (cur == NULL)
{
return false;
}
Node* del;
if (cur->_left == NULL) //待删除节点的左孩子为空
{
del = cur;
if (parent == NULL)
{
_root = cur->_right;
}
else
{
if (parent->_left == cur)
{
parent->_left = cur->_right;
}
else
{
parent->_right = cur->_right;
}
}
}
else if (cur->_right == NULL) //待删除节点的右孩子为空
{
del = cur;
if (parent == NULL)
{
_root = cur->_left;
}
else
{
if (parent->_left == cur)
{
parent->_left = cur->_left;
}
else
{
parent->_right = cur->_left;
}
}
}
else //待删节点的左右孩子都存在
{
parent = cur;
Node* firstLeft = cur->_right;
while (firstLeft->_left)
{
parent = firstLeft; //parent记录firstLeft的父亲
firstLeft = firstLeft->_left;
}
del = firstLeft; //记录下交换后要删除的节点
cur->_key = firstLeft->_key; //交换两节点的值
cur->_value = firstLeft->_value;
if (parent->_left == firstLeft) //最左节点是父亲节点的左孩子时
{
parent->_left = firstLeft->_right;
}
else //最左节点也有可能是父亲节点的右孩子,此时最左节点的父亲就是待删除节点
{
parent->_right = firstLeft->_right;
}
}
delete del;
return true;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
protected:
void _InOrder(Node* root)
{
if (root == NULL)
{
return;
}
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
Node* _root;
};
void TestTree()
{
int a[] = { 5, 3, 4, 1, 7, 8, 2, 6, 0, 9 };
BSTree<int, int> t;
for (size_t i = 0; i < sizeof(a) / sizeof(a[0]); i++)
{
t.Insert(a[i], i);
}
t.InOrder();
BSTreeNode<int, int>* ret = t.Find(7);
cout << ret->_key << ":" << ret->_value << endl;
t.Remove(7);
t.Remove(5);
//t.Remove(0);
//t.Remove(1);
//t.Remove(2);
//t.Remove(3);
//t.Remove(4);
//t.Remove(6);
//t.Remove(8);
//t.Remove(9);
//t.Remove(9);
t.InOrder();
}