文本预处理
import collections
import re
def read_time_machine():
with open('D:\\study\\a.txt', 'r') as f:
lines = [re.sub('[^a-z]+', ' ', line.strip().lower()) for line in f]
return lines
lines = read_time_machine()
print('# sentences %d' % len(lines))
def tokenize(sentences, token='word'):
"""Split sentences into word or char tokens"""
if token == 'word':
return [sentence.split(' ') for sentence in sentences]
elif token == 'char':
return [list(sentence) for sentence in sentences]
else:
print('ERROR: unkown token type '+token)
tokens = tokenize(lines)
print(tokens[0:2])
class Vocab(object):
def __init__(self, tokens, min_freq=0, use_special_tokens=False):
counter = count_corpus(tokens)
self.token_freqs = list(counter.items())
self.idx_to_token = []
if use_special_tokens:
self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
self.idx_to_token += ['', '', '', '']
else:
self.unk = 0
self.idx_to_token += ['']
self.idx_to_token += [token for token, freq in self.token_freqs
if freq >= min_freq and token not in self.idx_to_token]
self.token_to_idx = dict()
for idx, token in enumerate(self.idx_to_token):
self.token_to_idx[token] = idx
def __len__(self):
return len(self.idx_to_token)
def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)):
return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens]
def to_tokens(self, indices):
if not isinstance(indices, (list, tuple)):
return self.idx_to_token[indices]
return [self.idx_to_token[index] for index in indices]
def count_corpus(sentences):
tokens = [tk for st in sentences for tk in st]
return collections.Counter(tokens)
vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[0:10])
for i in range(8, 10):
print('words:', tokens[i])
print('indices:', vocab[tokens[i]])
'''
用现有工具进行分词
我们前面介绍的分词方式非常简单,它至少有以下几个缺点:
标点符号通常可以提供语义信息,但是我们的方法直接将其丢弃了
类似“shouldn't", "doesn't"这样的词会被错误地处理
类似"Mr.", "Dr."这样的词会被错误地处理
我们可以通过引入更复杂的规则来解决这些问题,但是事实上,
有一些现有的工具可以很好地进行分词,我们在这里简单介绍其中的两个:spaCy和NLTK。
下面是一个简单的例子:
'''
text = "Mr. Chen doesn't agree with my suggestion."
import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp(text)
print([token.text for token in doc])
from nltk.tokenize import word_tokenize
from nltk import data
data.path.append('D:\\study\\a.txt')
print(word_tokenize(text))
语言模型
import torch
import random
with open('D:\\study\\a.txt') as f:
corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
idx_to_char = list(set(corpus_chars))
char_to_idx = {char: i for i, char in enumerate(idx_to_char)}
vocab_size = len(char_to_idx)
print(vocab_size)
corpus_indices = [char_to_idx[char] for char in corpus_chars]
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)
def load_data_jay_lyrics():
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[0:10000]
idx_to_char = list(set(corpus_chars))
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
vocab_size = len(char_to_idx)
corpus_indices = [char_to_idx[char] for char in corpus_chars]
return corpus_indices, char_to_idx, idx_to_char, vocab_size
'''
下面的代码每次从数据里随机采样一个小批量。
其中批量大小batch_size是每个小批量的样本数,
num_steps是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,
相邻的两个随机小批量在原始序列上的位置不一定相毗邻。'''
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
num_examples = (len(corpus_indices) - 1) // num_steps
example_indices = [i * num_steps for i in range(num_examples)]
random.shuffle(example_indices)
def _data(i):
return corpus_indices[i: i + num_steps]
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for i in range(0, num_examples, batch_size):
batch_indices = example_indices[i: i + batch_size]
X = [_data(j) for j in batch_indices]
Y = [_data(j + 1) for j in batch_indices]
yield torch.tensor(X, device=device), torch.tensor(Y, device=device)
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
corpus_len = len(corpus_indices) // batch_size * batch_size
corpus_indices = corpus_indices[: corpus_len]
indices = torch.tensor(corpus_indices, device=device)
indices = indices.view(batch_size, -1)
batch_num = (indices.shape[1] - 1) // num_steps
for i in range(batch_num):
i = i * num_steps
X = indices[:, i: i + num_steps]
Y = indices[:, i + 1: i + num_steps + 1]
yield X, Y
my_seq = list(range(10))
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=2):
print('...X: ', X, '\nY:', Y, '\n')
循环神经网络基础