第十四周作业 jupyter

jupyter notebook (别称ipython notebook)是一个基于网页的交互式笔记本,支持40多种编程语言。支持创建和共享包含实时代码、方程式、可视化和叙述性文本的文档。


安装jupyter notebook

具体安装方式官网有详细介绍 install jupyter,我选择了通过anaconda安装

anaconda是一个python的开源科学计算平台,支持linux、mac、windows系统,内置个各种常用科学计算包,提供包管理功能和环境管理功能,解决了多版本python并存造成的各种问题,适合初学者和懒人使用

下载可以通过anaconda 的官方下载地址,不过速度真的太慢了……推荐使用清华大学镜像站下载

有关jupyter的各种用法可以查看这个博客, 或者直接查阅官方文档


作业题目

Anscombe's quartet comprises of four datasets, and is rather famous. Why?You'll find out in this exercise.

Anscombe’s Quartet
IIIIIIIV
xyxyxyxy
10.08.0410.09.1410.07.468.06.58
8.06.958.08.148.06.778.05.76
13.07.5813.08.7413.012.748.07.71
9.08.819.08.779.07.118.08.84
11.08.3311.09.2611.07.818.08.47
14.09.9614.08.1014.08.848.07.04
6.07.246.06.136.06.088.05.25
4.04.264.03.104.05.3919.012.50
12.010.8412.09.1312.08.158.05.56
7.04.827.07.267.06.428.07.91
5.05.685.04.745.05.738.06.89

导入csv文件


涉及知识:

1、csv(逗号分隔值)是一种用来存储数据的纯文本文件,通常都是用于存放电子表格或数据的一种文件格式。一般用WORDPAD或记事本(NOTE),EXCEL打开。

2、%matplotlib inline 这是一个魔法函数 (magic function),是IPython中一种模仿命令行来访问magic函数的独有的形式

3、seaborn 是一个可以调整图表让你的图表更优美漂亮的库,知乎上有官方文档的中文翻译

4、read_csv() 读取csv文件

5、.head(10) 显示前10行数据, 如果没有参数则默认显示5行数据


Part 1

For each of the four datasets...

  • Compute the mean and variance of both x and y
  • Compute the correlation coefficient between x and y
  • Compute the linear regression line:  (hint: use statsmodels and look at the Statsmodels notebook)


涉及知识:

1、groupby 是pandas提供的一个能对数据集进行切片、切块、摘要等操作的函数

2、pandas.DataFrame.mean()求平均值

3、pandas.DataFrame.var()求方差


涉及知识:

.corr():返回列与列之间的相关系数



涉及知识:

scipy.stats.linregress : 只对计算两组测量值的最小二成回归进行优化,返回系数,截距,R2系数和标准差


    可以看出,四组数据x的平均值都是9.0,方差都是11.0; y的平均值都是7.5,方差都是4.12;x, y的相关系数都是0.81;四组数据的线性回归方程都近似 y = 0.5x + 3


Part 2

Using Seaborn, visualize all four datasets.

hint: use sns.FacetGrid combined with plt.scatter



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值