8.15 证明最大公共子图为NP-完全问题

本文证明了寻找两个图的最大公共子图,要求剩余部分至少包含b个节点且完全相同的问题是NP-完全。通过从团问题规约到最大公共子图问题,展示了其难度等价性。
摘要由CSDN通过智能技术生成

题目:

证明如下问题是NP-完全的:

        输入:两个图G1=(V1,E1)和G2=(V2,E2)

        输出:两个节点集合V1’和V2'分别是V1和V2的子集,它们被移除后,将在两图中分别留下至少b个节点,且图的剩余部分完全一样


解:

     我们需要找到一个NP-完全问题规约到该问题上,从而证明出该问题是NP-完全的。我们选择团问题规约到该问题中。

     考虑这个问题,当我们在图G1中找到一个规模为b的团,便可以得到一个子图G2,其中该子图G2有b个顶点,且它是一个完全图。那么反过来说给出G1,G2,如果我们能求解它们的最大公共子图,如果该子图的顶点数为b,便能得到一个规模为b的团,从而将团问题的实例(G1,b)便能规约到在G1,G2(其中G2是规模为b的完全图)求解最大公共子图实例(G1,G2,b)的问题


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值