题目:
证明如下问题是NP-完全的:
输入:两个图G1=(V1,E1)和G2=(V2,E2)
输出:两个节点集合V1’和V2'分别是V1和V2的子集,它们被移除后,将在两图中分别留下至少b个节点,且图的剩余部分完全一样
解:
我们需要找到一个NP-完全问题规约到该问题上,从而证明出该问题是NP-完全的。我们选择团问题规约到该问题中。
考虑这个问题,当我们在图G1中找到一个规模为b的团,便可以得到一个子图G2,其中该子图G2有b个顶点,且它是一个完全图。那么反过来说给出G1,G2,如果我们能求解它们的最大公共子图,如果该子图的顶点数为b,便能得到一个规模为b的团,从而将团问题的实例(G1,b)便能规约到在G1,G2(其中G2是规模为b的完全图)求解最大公共子图实例(G1,G2,b)的问题