public
class
TwoImageUtils {
public
static
void
loadImage
(String path, final ImageView imageView) {
new
AsyncTask<String, Void, Bitmap>() { @Override
protected
void
onPostExecute
(Bitmap bitmap) { super.onPostExecute(bitmap);
if
(bitmap !=
null
) imageView.setImageBitmap(bitmap);
else
imageView.setImageResource(R.drawable.ic_launcher); } @Override
protected
Bitmap
doInBackground
(String...
params
) {
try
{ String path =
params
[
0
]; URL url =
new
URL(path); HttpURLConnection connection = (HttpURLConnection) url.openConnection(); connection.setRequestMethod(
"GET"
); connection.setConnectTimeout(
5000
); connection.setReadTimeout(
5000
);
int
code = connection.getResponseCode();
if
(code ==
200
) {
//得到图片数据
InputStream
is
= connection.getInputStream();
//BitmapFactory.decodeStream(is);//ARGB_888 一个像素占 4个字节 ARGB_565 一个像素占 2 个字节 Alpha Red、Green、Blue(颜色)
BitmapFactory.Options options =
new
BitmapFactory.Options();
//在图片真正解析之前,不要解析图片数据,只需要告诉一下转换器,只要获取图片的像素(宽高)
options.inJustDecodeBounds =
true
;
//告诉BitmapFactory转换工厂不去真正解析图片只需要拿到图片宽高就行
//假解析 API 有bug
BitmapFactory.decodeStream(
is
,
null
, options);
//压缩,根据图片采样率进行二次采样 100 * 100 是你所期望的具体图片尺寸
//options.inSampleSize = 2; //采样用来计算图片的宽高(1920 * 1080 -> 1920 / 2 1080 / 2)
//获取图片宽高,注意:图片的原始宽高
int
width = options.outWidth;
int
height = options.outHeight; System.
out
.println(
"宽:"
+ width +
"高 : "
+ height);
//定义一个变量去记住我们采样率
int
inSampleSize =
1
;
//默认是1 ,即不对图片进行任何压缩
if
(width >
100
|| height >
100
) {
int
halfWidth = width /
2
;
int
halfHeight = height /
2
;
while
((halfWidth / inSampleSize) >=
100
&& (halfHeight / inSampleSize) >=
100
) {
//计算采样率
inSampleSize *=
2
; } }
//采样率改变了
options.inSampleSize = inSampleSize;
// 8
//图片压缩完之后,放行图片解析
options.inJustDecodeBounds =
false
;
//告诉图片转换工厂,可以解析图片了
//关闭之前的流
is
.close();
//重新再去得到当前这张图片的字节流数据
is
= url.openStream();
//开始解析图片
Bitmap bitmap = BitmapFactory.decodeStream(
is
,
null
, options);
//关闭流
is
.close();
// Bitmap bitmap = BitmapFactory.decodeStream(is);
return
bitmap; } }
catch
(Exception e) { e.printStackTrace(); }
return
null
; } }.execute(path); }}
关于二次采样
最新推荐文章于 2018-12-04 13:33:25 发布