leetcode 365. Water and Jug Problem

题目链接
题目大意:

给你两个壶,通过以下操作是否能够得到指定的水量:
1. 装满任意一个壶
2. 倒空任意一个壶
3. 从一个壶向另一个壶倒水,直到某个壶满了或者空了

思路:
  1. 首先想到的是用递归。两个壶的水量是状态,通过三种操作来进行状态转移。可能是因为需要考虑的比较多,总之是写挫了,放弃了这种想法。
  2. 看了一下题解可以把问题 转换为 ax+by=z a x + b y = z 是否有解的问题。
    为什么可以进行这样的转化呢?因为题意中的三种操作导致的两壶总水量都可以通过改变 ab a 和 b 来实现。
    • 装满任意一个壶: ++a++b + + a 或 者 + + b
    • 倒空任意一个壶: ab − − a 或 者 − − b
    • 从一个壶向另外一个壶倒: ++a,ba,++bab + + a , − − b 或 − − a , + + b 或 a 、 b 不 变

那么如何判断 ax+by=z a x + b y = z 是否有解呢,这就需要用到裴蜀定理了。
结合到这道题目, ax+by=z a x + b y = z 有解的充要条件是: gdc(a,b)|z g d c ( a , b ) | z ,即 abz a 和 b 的 最 大 公 约 数 整 除 z

给出AC代码:

class Solution {
public:
    bool canMeasureWater(int x, int y, int z) {
        return (z==0) || (x+y>=z && z%gcd(x,y)==0);
    }
    int gcd(int x, int y){
        return y==0 ? x : gcd(y, x%y);
    }
};

需要注意 x+y>=z x + y >= z 以及 gcd(a,b)==0 g c d ( a , b ) == 0 a==b==0 a == b == 0 的情况

其他做法:DFS & BFS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值