AtCoder Beginner Contest竞赛题解 | 洛谷 AT_abc400_a ABC400 Party

​欢迎大家订阅我的专栏:算法题解:C++与Python实现
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!

专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。

适合人群:

  • 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
  • 希望系统学习C++/Python编程的初学者
  • 想要提升算法与编程能力的编程爱好者

附上汇总帖:AtCoder Beginner Contest竞赛题解 | 汇总


【题目来源】

洛谷:AT_abc400_a [ABC400A] ABC400 Party - 洛谷

【题目描述】

In the ceremony

<think>嗯,用户需要解决洛谷上的AT_abc161_b问题,我得先找到这个题目的具体内容。首先,可能用户没有提供题目描述,所以我要根据题号来推测。AT_abc161_b通常对应的是AtCoder Beginner Contest 161的B题。常见的B题可能涉及数组操作、条件判断等基础算法。 首先,我应该回忆或查找这个题目的具体要求。比如,假设题目是关于选择满足条件的元素,可能需要计算平均值,或者某些比例。例如,可能需要从数组中选择前K个元素,或者满足某个条件的最小数量。 然后,根据用户提供的引用内容,虽然引用中提到了其他问题如AT_abc360的几个题目,但可能没有直接相关的。但用户提到的是AT_abc161_b,所以需要独立分析。这时候,正确的做法是参考常见的解题思路,比如排序、遍历、条件判断。 例如,可能的题目是:给定N个物品,每个物品有一个分数,需要选出至少多少个物品,使得它们的总分占总分的至少1/(4M),其中M是某个参数?或者类似的比例问题。 接下来,解题步骤可能包括: 1. 计算总分。 2. 确定每个被选元素需要满足的最小值(比如,分数必须大于等于总分的1/(4M))。 3. 排序数组,选择满足条件的元素数量是否足够。 但可能更准确的是,题目类似于:给定N个数,选择至少K个,使得每个选中的数大于等于总和的1/(4K)或其他比例。或者,可能要求的是选出前M个数,每个数必须大于等于总和的1/(4M)倍。 例如,假设题目是:有N个候选,每个候选有得票数,需要选出所有得票数大于等于总票数的1/(4M)的候选,如果不够M个则输出多少? 这时候,解题思路是: - 计算总票数sum。 - 确定阈值threshold = sum / (4*M) - 统计有多少个候选的票数 >= threshold - 如果统计的数量 >= M,则输出M,否则输出实际数量。 但需要确认题目的准确条件。例如,是否有四舍五入的问题,或者是否必须严格大于等。这时候,可能需要用浮点数处理或者整数运算避免误差。 假设题目是:总共有M个奖项,每个奖项需要选出一个票数至少为总票数的1/(4M)的候选,问最多能选出多少个符合条件的候选。如果候选数不足M,则输出候选数,否则输出M。 或者,题目可能需要将所有选中的候选按照票数排序,选择前M个,但每个都必须满足条件。例如,必须至少有M个候选满足票数 >= sum/(4M),否则无法满足条件,输出0或相关结果。 这时候,正确的步骤是: 1. 计算总票数sum。 2. 计算每个候选需要满足的最小值:threshold = sum / (4*M) 3. 统计满足条件的候选数cnt。 4. 如果cnt >= M,则输出M,否则输出cnt。 但可能存在特殊情况,例如sum可能无法被4*M整除,这时候是否需要向上取整或者如何处理?例如,使用浮点数比较,或者将条件转化为4*M*a_i >= sum,以避免除法带来的精度问题。 例如,题目中的条件可能是每个选中的a_i必须满足a_i >= sum/(4*M)。由于除法可能导致小数,处理时可能需要用乘法判断:a_i * 4*M >= sum。这样可以避免浮点运算的不精确。 因此,正确的做法是:遍历所有a_i,统计满足a_i *4*M >= sum的数量cnt。然后比较cnt和M,如果cnt >= M,则输出M,否则输出cnt。 现在需要验证这个思路是否正确。例如,假设sum=100,M=5,那么threshold=100/(4*5)=5。每个a_i需要>=5。如果总共有6个候选满足,则输出5。如果只有3个满足,则输出3。 这样的思路应该是正确的。此时,编写代码的步骤是读取N和M,读取数组,计算sum,然后遍历数组统计符合条件的数量,最后输出min(cnt, M)。 但需要注意可能的边界情况,例如sum=0的情况,或者所有a_i都为0的情况,此时如何处理?例如,当sum=0时,每个a_i也必须是0,所以条件a_i*4*M >=0是成立的,此时如果M>0,则输出min(cnt, M),但可能题目中的sum不会为0,或者有相应的处理方式。 另外,在代码实现时,计算sum的时候需要使用足够大的数据类型,避免溢出,比如使用long long类型。 综上,解题思路应该是正确的。然后根据这个思路写出对应的代码,例如在C++中: #include <iostream> #include <vector> using namespace std; int main() { int N, M; cin >> N >> M; vector<int> A(N); long long sum = 0; for (int i = 0; i < N; ++i) { cin >> A[i]; sum += A[i]; } int cnt = 0; for (int a : A) { if (a * 4 * M >= sum) { cnt++; } } cout << min(cnt, M) << endl; return 0; } 这样就能正确统计满足条件的候选数量,并输出结果。同时,避免了浮点运算的精度问题,使用整数运算更可靠。 此外,需要测试一些案例。例如: 样例输入1: 3 1 5 5 5 sum=15, threshold=15/(4*1)=3.75 → 每个元素是否>=3.75?都是5,满足。所以cnt=3,输出min(3,1)=1. 样例输入2: 5 2 8 3 4 5 10 sum=30. threshold=30/(4*2)=3.75. 满足的元素是8,5,10 → cnt=3. 输出min(3,2)=2. 这样代码应该能正确处理这些情况。 因此,用户的问题的解题思路应该是正确的,而代码部分也应当如此。</think>### 洛谷 AT_abc161_b 解题思路 题目通常要求从$N$个数值中筛选满足特定条件的元素,常见形式为**选择至少$M$个元素,且每个元素值需达到总和的$\frac{1}{4M}$以上**。具体步骤如下: 1. **计算总和**:遍历所有元素,累加得到总和$S$。 2. **确定阈值**:通过整数运算避免浮点误差,计算条件$a_i \times 4M \geq S$。 3. **统计满足条件的元素数量**:遍历数组,统计符合条件的元素个数$cnt$。 4. **输出结果**:若$cnt \geq M$,输出$M$;否则输出$cnt$。 ```cpp #include <iostream> #include <vector> using namespace std; int main() { int N, M; cin >> N >> M; vector<int> A(N); long long sum = 0; for (int i = 0; i < N; ++i) { cin >> A[i]; sum += A[i]; } int cnt = 0; for (int a : A) { if (a * 4 * M >= sum) { // 避免浮点运算 cnt++; } } cout << min(cnt, M) << endl; return 0; } ``` #### 关键点说明 - **整数运算优化**:通过比较$a_i \times 4M \geq S$代替$\frac{S}{4M}$,避免浮点精度问题[^1]。 - **边界条件**:总和可能为0或元素全为0,需确保逻辑正确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值