欢迎大家订阅我的专栏:算法题解:C++与Python实现!
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!
专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。
适合人群:
- 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
- 希望系统学习C++/Python编程的初学者
- 想要提升算法与编程能力的编程爱好者
附上汇总贴:学而思编程周赛语言基础组 | 汇总
【题目描述】
小猴和小美正在玩游戏,小猴有 n n n 根木棒,编号依次为 1 ∼ n 1∼n 1∼n,第 i i i 根木棒的长度为 a i a_i ai。小美问小猴能不能在 n n n 根木棒中选出 3 3 3 根木棒组成一个直角三角形。小猴挑选了半天也没有挑选出来,请你帮助它挑选出可以构成直角三角形的三根木棒,并且输出该三角形的面积,如果有多种方案,输出能构成的所有直角三角形中的最大面积 ,如果不能构成直角三角形,则输出 − 1 −1 −1。
【输入】
第一行,包含一个整数 n n n,表示木棒数量。
第二行,包含 n n n 个正整数 a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,…,an,表示每根木棒的长度。
【输出】
一行,包含一个整数,表示构成直角三角形的最大面积。
【输入样例】
8
8 3 5 12 17 37 15 35
【输出样例】
210
【代码详解】
#include <bits/stdc++.h>
using namespace std;
// 定义数组存储边长,最大5000个元素
int a[5005];
// 标记数组,记录存在的边长(最大边长1000000)
bool f[1000005];
// 检查函数:判断两条边是否能构成直角三角形的直角边
bool chk(int i, int j)
{
int x = a[i], y = a[j];
// 计算斜边平方(使用long long防止溢出)
long long z = 1ll * x * x + 1ll * y * y;
// 计算可能的斜边长度(取整数部分)
int t = sqrt(z);
// 验证:t的平方是否等于z,且t在数据范围内,且t对应的边长存在
return (1ll * t * t == z && t <= 1000000 && f[t] == true);
}
int main()
{
int n;
cin >> n;
// 输入所有边长并标记存在的边长
for (int i = 1; i <= n; i++)
{
cin >> a[i];
f[a[i]] = true; // 标记该边长存在
}
long long ans = -1; // 初始化答案为-1(表示未找到)
// 双重循环枚举所有可能的直角边组合
for (int i = 1; i <= n; i++)
{
for (int j = i + 1; j <= n; j++)
{
if (chk(i, j)) // 如果能构成直角三角形
{
// 计算面积并更新最大值(注意使用long long)
ans = max(ans, 1ll * a[i] * a[j] / 2);
}
}
}
// 输出最大面积(若无解输出-1)
cout << ans << endl;
return 0;
}
【运行结果】
8
8 3 5 12 17 37 15 35
210