学而思编程2025年CodeStars年度综合评估真题解析 | 提高进阶组 T1 庄园

​欢迎大家订阅我的专栏:算法题解:C++与Python实现
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!

专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。

适合人群:

  • 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
  • 希望系统学习C++/Python编程的初学者
  • 想要提升算法与编程能力的编程爱好者

附上汇总贴:学而思编程2025年CodeStars年度综合评估真题解析 | 汇总


【题目描述】

皮皮制作了一个玩具叫做青蛙棋,它是一个单人的益智棋类游戏,青蛙棋的棋盘只有一行,共 n n n 个格子,从左到右编号从 1 ∼ n 1\sim n 1n,青蛙从 1 1 1 号格子出发,需要到达 n n n 号格子才算胜利。

青蛙棋只能进行跳跃,第一次只能跳一格,跳到 2 2 2 号格子,接下来的跳跃必须满足以下条件:如果它向右跳,那么每次必须比上一次多跳一个格子;如果它向左跳,那么每次必须和上一次的跳跃距离完全相同。

例如,当青蛙第一次跳到 2 2 2 号格子后,下一步它可以跳到 4 4 4 号或者 1 1 1 号格子。

棋盘上每个格子都有费用,当青蛙跳到第 i i i 个格子时,需要支付 a i a_i ai 的费用,因此玩家需要在到达 n n n 号格的前提下,尽可能少花钱。请你求出这个最小值。

【输入】

第一行一个整数 n n n,表示格子的数量。

接下来的 n n n 行,每行一个整数 a i a_i ai,代表 1 ∼ n 1\sim n 1n 号格子的费用。

【输出】

输出共一行一个正整数,表示到达 n n n 号格子的最小花费。

注意:初始在 1 1 1 号格子时不收费,但是多次经过同一个格子时需要重复计费。

【输入样例】

6
1
2
3
4
5
6

【输出样例】

12

【代码详解】

#include <bits/stdc++.h>
using namespace std;

const int N = 1005;  // 定义最大数组长度

// 全局变量:
// n: 数组长度
// a[N]: 存储每个位置的数值
// f[N][N]: 记忆化数组,f[x][d]表示从位置x以步长d出发的最小路径和
int n;
int a[N], f[N][N];

/**
 * 深度优先搜索函数(带记忆化)
 * @param x 当前位置
 * @param d 当前步长
 * @return 从位置x出发的最小路径和
 */
int dfs(int x, int d)
{
    // 边界条件:超出数组范围返回极大值
    if (x < 1 || x > n)
    {
        return 1e9;
    }
    
    // 到达终点(最后一个位置)
    if (x == n)
    {
        return a[n];
    }
    
    // 记忆化:如果已经计算过则直接返回结果
    if (f[x][d])
    {
        return f[x][d];
    }
    
    // 状态转移:选择向左跳d步或向右跳d+1步中的较小值
    f[x][d] = min(dfs(x - d, d), dfs(x + d + 1, d + 1)) + a[x];
    
    return f[x][d];
}

int main()
{
    // 输入数组长度
    cin >> n;
    
    // 输入每个位置的数值
    for (int i = 1; i <= n; i++)
    {
        cin >> a[i];
    }
    
    // 从位置2开始,初始步长为1,输出最小路径和
    cout << dfs(2, 1) << endl;
    
    return 0;
}

【运行结果】

6
1
2
3
4
5
6
12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值