欢迎大家订阅我的专栏:算法题解:C++与Python实现!
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!
专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。
适合人群:
- 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
- 希望系统学习C++/Python编程的初学者
- 想要提升算法与编程能力的编程爱好者
附上汇总贴:学而思编程2025年CodeStars年度综合评估真题解析 | 汇总
【题目描述】
皮皮制作了一个玩具叫做青蛙棋,它是一个单人的益智棋类游戏,青蛙棋的棋盘只有一行,共 n n n 个格子,从左到右编号从 1 ∼ n 1\sim n 1∼n,青蛙从 1 1 1 号格子出发,需要到达 n n n 号格子才算胜利。
青蛙棋只能进行跳跃,第一次只能跳一格,跳到 2 2 2 号格子,接下来的跳跃必须满足以下条件:如果它向右跳,那么每次必须比上一次多跳一个格子;如果它向左跳,那么每次必须和上一次的跳跃距离完全相同。
例如,当青蛙第一次跳到 2 2 2 号格子后,下一步它可以跳到 4 4 4 号或者 1 1 1 号格子。
棋盘上每个格子都有费用,当青蛙跳到第 i i i 个格子时,需要支付 a i a_i ai 的费用,因此玩家需要在到达 n n n 号格的前提下,尽可能少花钱。请你求出这个最小值。
【输入】
第一行一个整数 n n n,表示格子的数量。
接下来的 n n n 行,每行一个整数 a i a_i ai,代表 1 ∼ n 1\sim n 1∼n 号格子的费用。
【输出】
输出共一行一个正整数,表示到达 n n n 号格子的最小花费。
注意:初始在 1 1 1 号格子时不收费,但是多次经过同一个格子时需要重复计费。
【输入样例】
6
1
2
3
4
5
6
【输出样例】
12
【代码详解】
#include <bits/stdc++.h>
using namespace std;
const int N = 1005; // 定义最大数组长度
// 全局变量:
// n: 数组长度
// a[N]: 存储每个位置的数值
// f[N][N]: 记忆化数组,f[x][d]表示从位置x以步长d出发的最小路径和
int n;
int a[N], f[N][N];
/**
* 深度优先搜索函数(带记忆化)
* @param x 当前位置
* @param d 当前步长
* @return 从位置x出发的最小路径和
*/
int dfs(int x, int d)
{
// 边界条件:超出数组范围返回极大值
if (x < 1 || x > n)
{
return 1e9;
}
// 到达终点(最后一个位置)
if (x == n)
{
return a[n];
}
// 记忆化:如果已经计算过则直接返回结果
if (f[x][d])
{
return f[x][d];
}
// 状态转移:选择向左跳d步或向右跳d+1步中的较小值
f[x][d] = min(dfs(x - d, d), dfs(x + d + 1, d + 1)) + a[x];
return f[x][d];
}
int main()
{
// 输入数组长度
cin >> n;
// 输入每个位置的数值
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
// 从位置2开始,初始步长为1,输出最小路径和
cout << dfs(2, 1) << endl;
return 0;
}
【运行结果】
6
1
2
3
4
5
6
12