欢迎大家订阅我的专栏:算法题解:C++与Python实现!
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!
专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。
适合人群:
- 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
- 希望系统学习C++/Python编程的初学者
- 想要提升算法与编程能力的编程爱好者
附上汇总贴:学而思编程2025年CodeStars年度综合评估真题解析 | 汇总
【题目描述】
皮皮有一个庄园,我们可以把他的庄园理解为一个 n × m n×m n×m 的矩阵。
由于他太久没有打理庄园,庄园的田地现在长满了杂草,他现在想要把杂草清理干净。他可以做两种操作,分别是:
- 使用法术把草的高度从 x i x_i xi 变成 y i y_i yi,消耗的体力值为 z i z_i zi,法术可以使用无限次
- 使用镰刀把草的高度从 x x x 变成 x − 1 x−1 x−1,消耗的体力值为 1 1 1
他现在需要修剪他的草地,把草地中草的高度全部变为 1 1 1,皮皮现在想要知道他最少需要消耗的体力值是多少。
数据保证一定有一种方法可以把草地中草的高度变为 1 1 1。
【输入】
第一行三个数 n , m , v n,m,v n,m,v,分别代表庄园的长度和宽度,还有皮皮可以使用的法术的数量。
第二行到第 n + 1 n+1 n+1 行每行 m m m 个数 a i , j a_{i,j} ai,j,代表庄园中的每一格草的高度。
接下来 v v v 行每行三个数 x i , y i , z i x_i,y_i,z_i xi,yi,zi,代表皮皮可以使用的每一种法术,将 x i x_i xi 变成 y i y_i yi,消耗体力为 z i z_i zi。
【输出】
一行一个数代表皮皮最少消耗的体力值。
【输入样例】
3 3 3
10 10 10
10 10 10
10 10 10
9 15 1
14 1 1
8 2 2
【输出样例】
36
【代码详解】
#include <bits/stdc++.h>
using namespace std;
#define int long long // 定义int为long long类型
const int N = 105, M = 305; // 定义矩阵和Floyd数组的最大尺寸
// 全局变量:
// n, m: 矩阵的行列数
// v: 特殊规则的数量
// s: 记录特殊规则中的最大坐标
// a[N][N]: 存储原始矩阵
// ans: 最终结果
// f[M][M]: Floyd算法的距离矩阵
int n, m, v, s, a[N][N], ans, f[M][M];
signed main()
{
// 输入矩阵的行列数和特殊规则数量
cin >> n >> m >> v;
// 输入矩阵元素
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
cin >> a[i][j];
}
}
// 初始化Floyd距离矩阵为极大值
for (int i = 1; i <= 300; i++)
{
for (int j = 1; j <= 300; j++)
{
f[i][j] = 1e18;
}
}
// 输入特殊规则并更新距离矩阵
for (int i = 1; i <= v; i++)
{
int x, y, z;
cin >> x >> y >> z;
f[x][y] = min(f[x][y], z); // 取最小值保证最优路径
s = max(s, max(x, y)); // 更新最大坐标
}
// 补充默认规则:i到j的默认距离为i-j
for (int i = 1; i <= s; i++)
{
for (int j = 1; j <= i; j++)
{
f[i][j] = min(f[i][j], i - j);
}
}
// Floyd算法计算所有点对的最短路径
for (int k = 1; k <= s; k++)
{
for (int i = 1; i <= s; i++)
{
for (int j = 1; j <= s; j++)
{
f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
}
}
}
// 计算最终结果
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
int sum = a[i][j] - 1; // 默认情况下的值
// 考虑所有可能的k值,取最小值
for (int k = 1; k <= min(a[i][j], s); k++)
{
sum = min(sum, a[i][j] - k + f[k][1]);
}
ans += sum; // 累加到最终结果
}
}
// 输出最终结果
cout << ans << endl;
return 0;
}
【运行结果】
3 3 3
10 10 10
10 10 10
10 10 10
9 15 1
14 1 1
8 2 2
36