本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。
欢迎大家订阅我的专栏:算法题解:C++与Python实现!
附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总
【题目来源】
AcWing:1098. 城堡问题 - AcWing题库
【题目描述】
1 2 3 4 5 6 7
#############################
1 # | # | # | | #
#####---#####---#---#####---#
2 # # | # # # # #
#---#####---#####---#####---#
3 # | | # # # # #
#---#########---#####---#---#
4 # # | | | | # #
#############################
(图 1)
# = Wall
| = No wall
- = No wall
方向:上北下南左西右东。
图1是一个城堡的地形图。
请你编写一个程序,计算城堡一共有多少房间,最大的房间有多大。
城堡被分割成 m ∗ n m*n m∗n 个方格区域,每个方格区域可以有0~4面墙。
注意:墙体厚度忽略不计。
【输入】
第一行包含两个整数 m m m 和 n n n,分别表示城堡南北方向的长度和东西方向的长度。
接下来 m m m 行,每行包含 n n n 个整数,每个整数都表示平面图对应位置的方块的墙的特征。
每个方块中墙的特征由数字 P P P 来描述,我们用1表示西墙,2表示北墙,4表示东墙,8表示南墙, P P P 为该方块包含墙的数字之和。
例如,如果一个方块的 P P P 为3,则 3 = 1 + 2,该方块包含西墙和北墙。
城堡的内墙被计算两次,方块(1,1)的南墙同时也是方块(2,1)的北墙。
输入的数据保证城堡至少有两个房间。
【输出】
共两行,第一行输出房间总数,第二行输出最大房间的面积(方块数)。
【输入样例】
4 7
11 6 11 6 3 10 6
7 9 6 13 5 15 5
1 10 12 7 13 7 5
13 11 10 8 10 12 13
【输出样例】
5
9
【代码详解】
《AcWing 1098 城堡问题》 #BFS#
#include <bits/stdc++.h>
using namespace std;
const int N = 55, M = N * N; // 定义网格最大尺寸和队列最大长度
#define x first // 定义pair的第一个元素为x
#define y second // 定义pair的第二个元素为y
typedef pair<int, int> PII; // 定义坐标对类型
// 全局变量:
// n: 网格行数
// m: 网格列数
// g[N][N]: 存储网格数据(每个格子的墙信息)
// q[M]: BFS队列
// st[N][N]: 标记数组,记录是否访问过
int n, m;
int g[N][N];
PII q[M];
bool st[N][N];
/**
* 广度优先搜索函数,用于计算连通区域的面积
* @param sx 起始点x坐标
* @param sy 起始点y坐标
* @return 连通区域的面积
*/
int bfs(int sx, int sy)
{
// 定义四个方向的偏移量(西、北、东、南)
int dx[4] = {0, -1, 0, 1}, dy[4] = {-1, 0, 1, 0};
int hh = 0, tt = 0; // 初始化队列头尾指针
q[0] = {sx, sy}; // 将起点加入队列
st[sx][sy] = true; // 标记起点为已访问
int area = 0; // 初始化区域面积
while (hh <= tt) // 当队列不为空时
{
PII t = q[hh++]; // 取出队头元素
area++; // 区域面积加1
// 遍历当前点的4个相邻方向
for (int i = 0; i < 4; i++)
{
int a = t.x + dx[i], b = t.y + dy[i]; // 计算新坐标
if (a < 0 || a >= n || b < 0 || b >= m) continue; // 越界检查
if (st[a][b]) continue; // 已访问过
if (g[t.x][t.y] >> i & 1) continue; // 该方向有墙阻挡
q[++tt] = {a, b}; // 将新位置加入队列
st[a][b] = true; // 标记为已访问
}
}
return area; // 返回连通区域面积
}
int main()
{
// 输入网格尺寸
cin >> n >> m;
// 输入网格数据(每个格子的墙信息)
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
cin >> g[i][j];
}
}
int cnt = 0, area = 0; // cnt: 连通区域数量,area: 最大连通区域面积
// 遍历整个网格
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
// 找到未被访问过的位置
if (!st[i][j])
{
area = max(area, bfs(i, j)); // 更新最大面积
cnt++; // 增加连通区域计数
}
}
}
// 输出结果
cout << cnt << endl << area << endl;
return 0;
}
【运行结果】
4 7
11 6 11 6 3 10 6
7 9 6 13 5 15 5
1 10 12 7 13 7 5
13 11 10 8 10 12 13
5
9