CSP-J备考冲刺必刷题(C++) | AcWing 1098 城堡问题

本文分享的必刷题目是从蓝桥云课洛谷AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。

欢迎大家订阅我的专栏:算法题解:C++与Python实现

附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总


【题目来源】

AcWing:1098. 城堡问题 - AcWing题库

【题目描述】

    1   2   3   4   5   6   7  
   #############################
 1 #   |   #   |   #   |   |   #
   #####---#####---#---#####---#
 2 #   #   |   #   #   #   #   #
   #---#####---#####---#####---#
 3 #   |   |   #   #   #   #   #
   #---#########---#####---#---#
 4 #   #   |   |   |   |   #   #
   #############################
           (图 1)

   #  = Wall   
   |  = No wall
   -  = No wall

   方向:上北下南左西右东。

图1是一个城堡的地形图。

请你编写一个程序,计算城堡一共有多少房间,最大的房间有多大。

城堡被分割成 m ∗ n m*n mn 个方格区域,每个方格区域可以有0~4面墙。

注意:墙体厚度忽略不计。

【输入】

第一行包含两个整数 m m m n n n,分别表示城堡南北方向的长度和东西方向的长度。

接下来 m m m 行,每行包含 n n n 个整数,每个整数都表示平面图对应位置的方块的墙的特征。

每个方块中墙的特征由数字 P P P 来描述,我们用1表示西墙,2表示北墙,4表示东墙,8表示南墙, P P P 为该方块包含墙的数字之和。

例如,如果一个方块的 P P P 为3,则 3 = 1 + 2,该方块包含西墙和北墙。

城堡的内墙被计算两次,方块(1,1)的南墙同时也是方块(2,1)的北墙。

输入的数据保证城堡至少有两个房间。

【输出】

共两行,第一行输出房间总数,第二行输出最大房间的面积(方块数)。

【输入样例】

4 7 
11 6 11 6 3 10 6 
7 9 6 13 5 15 5 
1 10 12 7 13 7 5 
13 11 10 8 10 12 13 

【输出样例】

5
9

【代码详解】

《AcWing 1098 城堡问题》 #BFS#

#include <bits/stdc++.h>
using namespace std;

const int N = 55, M = N * N;  // 定义网格最大尺寸和队列最大长度
#define x first                // 定义pair的第一个元素为x
#define y second               // 定义pair的第二个元素为y
typedef pair<int, int> PII;    // 定义坐标对类型

// 全局变量:
// n: 网格行数
// m: 网格列数
// g[N][N]: 存储网格数据(每个格子的墙信息)
// q[M]: BFS队列
// st[N][N]: 标记数组,记录是否访问过
int n, m;
int g[N][N];
PII q[M];
bool st[N][N];

/**
 * 广度优先搜索函数,用于计算连通区域的面积
 * @param sx 起始点x坐标
 * @param sy 起始点y坐标
 * @return 连通区域的面积
 */
int bfs(int sx, int sy)
{
    // 定义四个方向的偏移量(西、北、东、南)
    int dx[4] = {0, -1, 0, 1}, dy[4] = {-1, 0, 1, 0};
    
    int hh = 0, tt = 0;         // 初始化队列头尾指针
    q[0] = {sx, sy};            // 将起点加入队列
    st[sx][sy] = true;          // 标记起点为已访问
    int area = 0;               // 初始化区域面积

    while (hh <= tt)            // 当队列不为空时
    {
        PII t = q[hh++];        // 取出队头元素
        area++;                 // 区域面积加1
        
        // 遍历当前点的4个相邻方向
        for (int i = 0; i < 4; i++)
        {
            int a = t.x + dx[i], b = t.y + dy[i];  // 计算新坐标
            
            if (a < 0 || a >= n || b < 0 || b >= m) continue;  // 越界检查
            if (st[a][b]) continue;                            // 已访问过
            if (g[t.x][t.y] >> i & 1) continue;                // 该方向有墙阻挡
            
            q[++tt] = {a, b};      // 将新位置加入队列
            st[a][b] = true;       // 标记为已访问
        }
    }
    return area;  // 返回连通区域面积
}

int main()
{
    // 输入网格尺寸
    cin >> n >> m;
    
    // 输入网格数据(每个格子的墙信息)
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            cin >> g[i][j];
        }
    }

    int cnt = 0, area = 0;  // cnt: 连通区域数量,area: 最大连通区域面积
    
    // 遍历整个网格
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            // 找到未被访问过的位置
            if (!st[i][j])
            {
                area = max(area, bfs(i, j));  // 更新最大面积
                cnt++;                        // 增加连通区域计数
            }
        }
    }

    // 输出结果
    cout << cnt << endl << area << endl;
    return 0;
}

【运行结果】

4 7 
11 6 11 6 3 10 6
7 9 6 13 5 15 5
1 10 12 7 13 7 5 
13 11 10 8 10 12 13
5
9
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值