欢迎大家订阅我的专栏:算法题解:C++与Python实现!
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!
专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。
适合人群:
- 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
- 希望系统学习C++/Python编程的初学者
- 想要提升算法与编程能力的编程爱好者
附上汇总贴:学而思编程2025年CodeStars年度综合评估真题解析 | 汇总
【题目来源】
小猴编程:学而思编程CodeStars年度综合评估
【题目描述】
一条东西向道路旁有 N N N 个建筑,以某个点为坐标原点,从左到右第 i i i 个建筑(以下简称建筑 i i i)坐标为 X i X_i Xi,高度为 H i H_i Hi。
当你处于建筑 i i i 的楼顶时,你能移动到建筑 j j j 的楼顶,当且仅当这两个建筑之间不存在高度超过 m a x ( H i , H j ) max(H_i,H_j) max(Hi,Hj) 的建筑。严谨地来说,当 i i i < < < j j j 时不存在 i i i < < < k k k < < < j j j 使得 H k H_k Hk > > > m a x ( H i , H j ) max(H_i,H_j) max(Hi,Hj);当 i i i > > > j j j 时不存在 j j j < < < k k k < < < i i i 使得 H k H_k Hk > > > m a x ( H i , H j ) max(H_i,H_j) max(Hi,Hj)。
你从建筑 i i i 楼顶移动到建筑 j j j 楼顶需要花费体力 ∣ X i − X j ∣ × ∣ H i − H j ∣ |X_i−Xj|×|H_i−H_j| ∣Xi−Xj∣×∣Hi−Hj∣。
给出 S S S,对于 i i i = = = 1 , 2 , ⋯ , N 1,2,⋯ ,N 1,2,⋯ ,N,求从建筑 S S S 楼顶移动到建筑 i i i 楼顶所需的最少体力。
【输入】
第一行两个整数
N
,
S
N,S
N,S。
接下来一行
N
N
N 个整数
X
i
X_i
Xi。
接下来一行
N
N
N 个整数
H
i
H_i
Hi。
【输出】
输出一行 N N N 个整数,第 i i i 个整数表示从建筑 S S S 移动到建筑 i i i 的最少体力消耗。
【输入样例】
6 5
1 2 3 4 5 6
2 5 3 6 7 5
【输出样例】
6 3 4 1 0 2
【代码详解】
#include <bits/stdc++.h>
using namespace std;
#define int long long // 定义int为long long类型
const int N = 200005; // 定义最大节点数
// 全局变量:
// g[N]: 邻接表存储图的边
// w[N]: 存储边的权重
// n: 节点数量
// s: 起点
// x[N]: 存储节点的x坐标
// h[N]: 存储节点的高度
// dis[N]: 存储从起点到各点的最短距离
// top: 栈顶指针
// p[N]: 单调栈
// vis[N]: 标记节点是否已访问
vector<int> g[N], w[N];
int n, s, x[N], h[N], dis[N], top, p[N];
bool vis[N];
/**
* 添加边到图中
* @param u 边的起点
* @param v 边的终点
*/
void addedge(int u, int v)
{
g[u].push_back(v);
w[u].push_back(abs(x[u] - x[v]) * abs(h[u] - h[v]));
}
// 优先队列节点结构体
struct node
{
int x, k; // x: 节点编号,k: 当前距离
// 重载小于运算符,用于优先队列排序
bool operator < (const node &W) const
{
return k > W.k; // 小根堆
}
};
/**
* Dijkstra算法求最短路径
* @param s 起点
*/
void dijkstra(int s)
{
priority_queue<node> q; // 优先队列
memset(dis, 0x3f, sizeof dis); // 初始化距离为无穷大
dis[s] = 0; // 起点距离为0
q.push({s, 0});
while (q.size())
{
auto t = q.top();
q.pop();
int u = t.x;
if (vis[u])
{
continue; // 已访问过则跳过
}
vis[u] = true; // 标记为已访问
// 遍历所有邻接节点
for (int i = 0; i < g[u].size(); i++)
{
int v = g[u][i];
if (dis[v] > dis[u] + w[u][i]) // 松弛操作
{
dis[v] = dis[u] + w[u][i];
q.push({v, dis[v]});
}
}
}
}
signed main()
{
// 输入节点数量和起点
cin >> n >> s;
// 输入各节点的x坐标
for (int i = 1; i <= n; i++)
{
cin >> x[i];
}
// 输入各节点的高度
for (int i = 1; i <= n; i++)
{
cin >> h[i];
}
// 使用单调栈构建图
for (int i = 1; i <= n; i++)
{
// 维护单调递减栈
while (top && h[p[top]] <= h[i])
{
addedge(p[top], i); // 添加双向边
addedge(i, p[top]);
top--;
}
// 如果栈不为空,添加与栈顶元素的边
if (top > 0)
{
addedge(p[top], i);
addedge(i, p[top]);
}
p[++top] = i; // 当前节点入栈
}
// 执行Dijkstra算法
dijkstra(s);
// 输出从起点到各点的最短距离
for (int i = 1; i <= n; i++)
{
cout << dis[i] << ' ';
}
cout << endl;
return 0;
}
【运行结果】
6 5
1 2 3 4 5 6
2 5 3 6 7 5
6 3 4 1 0 2