学而思编程2025年CodeStars年度综合评估真题解析 | 提高进阶组 T4 楼顶跳跃

​欢迎大家订阅我的专栏:算法题解:C++与Python实现
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!

专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。

适合人群:

  • 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
  • 希望系统学习C++/Python编程的初学者
  • 想要提升算法与编程能力的编程爱好者

附上汇总贴:学而思编程2025年CodeStars年度综合评估真题解析 | 汇总


【题目来源】

小猴编程:学而思编程CodeStars年度综合评估

【题目描述】

一条东西向道路旁有 N N N 个建筑,以某个点为坐标原点,从左到右第 i i i 个建筑(以下简称建筑 i i i)坐标为 X i X_i Xi,高度为 H i H_i Hi

当你处于建筑 i i i 的楼顶时,你能移动到建筑 j j j 的楼顶,当且仅当这两个建筑之间不存在高度超过 m a x ⁡ ( H i , H j ) max⁡(H_i,H_j) max(Hi,Hj) 的建筑。严谨地来说,当 i i i < < < j j j 时不存在 i i i < < < k k k < < < j j j 使得 H k H_k Hk > > > m a x ⁡ ( H i , H j ) max⁡(H_i,H_j) max(Hi,Hj);当 i i i > > > j j j 时不存在 j j j < < < k k k < < < i i i 使得 H k H_k Hk > > > m a x ⁡ ( H i , H j ) max⁡(H_i,H_j) max(Hi,Hj)

你从建筑 i i i 楼顶移动到建筑 j j j 楼顶需要花费体力 ∣ X i − X j ∣ × ∣ H i − H j ∣ |X_i−Xj|×|H_i−H_j| XiXj×HiHj

给出 S S S,对于 i i i = = = 1 , 2 , ⋯   , N 1,2,⋯ ,N 1,2,,N,求从建筑 S S S 楼顶移动到建筑 i i i 楼顶所需的最少体力。

【输入】

第一行两个整数 N , S N,S N,S
接下来一行 N N N 个整数 X i X_i Xi
接下来一行 N N N 个整数 H i H_i Hi

【输出】

输出一行 N N N 个整数,第 i i i 个整数表示从建筑 S S S 移动到建筑 i i i 的最少体力消耗。

【输入样例】

6 5
1 2 3 4 5 6
2 5 3 6 7 5

【输出样例】

6 3 4 1 0 2

【代码详解】

#include <bits/stdc++.h>
using namespace std;

#define int long long  // 定义int为long long类型
const int N = 200005;  // 定义最大节点数

// 全局变量:
// g[N]: 邻接表存储图的边
// w[N]: 存储边的权重
// n: 节点数量
// s: 起点
// x[N]: 存储节点的x坐标
// h[N]: 存储节点的高度
// dis[N]: 存储从起点到各点的最短距离
// top: 栈顶指针
// p[N]: 单调栈
// vis[N]: 标记节点是否已访问
vector<int> g[N], w[N];
int n, s, x[N], h[N], dis[N], top, p[N];
bool vis[N];

/**
 * 添加边到图中
 * @param u 边的起点
 * @param v 边的终点
 */
void addedge(int u, int v)
{
    g[u].push_back(v);
    w[u].push_back(abs(x[u] - x[v]) * abs(h[u] - h[v]));
}

// 优先队列节点结构体
struct node
{
    int x, k;  // x: 节点编号,k: 当前距离
    
    // 重载小于运算符,用于优先队列排序
    bool operator < (const node &W) const
    {
        return k > W.k;  // 小根堆
    }
};

/**
 * Dijkstra算法求最短路径
 * @param s 起点
 */
void dijkstra(int s)
{
    priority_queue<node> q;  // 优先队列
    memset(dis, 0x3f, sizeof dis);  // 初始化距离为无穷大
    dis[s] = 0;  // 起点距离为0
    q.push({s, 0});
    
    while (q.size())
    {
        auto t = q.top();
        q.pop();
        int u = t.x;
        
        if (vis[u])
        {
            continue;  // 已访问过则跳过
        }
        vis[u] = true;  // 标记为已访问
        
        // 遍历所有邻接节点
        for (int i = 0; i < g[u].size(); i++)
        {
            int v = g[u][i];
            if (dis[v] > dis[u] + w[u][i])  // 松弛操作
            {
                dis[v] = dis[u] + w[u][i];
                q.push({v, dis[v]});
            }
        }
    }
}

signed main()
{
    // 输入节点数量和起点
    cin >> n >> s;
    
    // 输入各节点的x坐标
    for (int i = 1; i <= n; i++)
    {
        cin >> x[i];
    }
    
    // 输入各节点的高度
    for (int i = 1; i <= n; i++)
    {
        cin >> h[i];
    }
    
    // 使用单调栈构建图
    for (int i = 1; i <= n; i++)
    {
        // 维护单调递减栈
        while (top && h[p[top]] <= h[i])
        {
            addedge(p[top], i);  // 添加双向边
            addedge(i, p[top]);
            top--;
        }
        
        // 如果栈不为空,添加与栈顶元素的边
        if (top > 0)
        {
            addedge(p[top], i);
            addedge(i, p[top]);
        }
        
        p[++top] = i;  // 当前节点入栈
    }
    
    // 执行Dijkstra算法
    dijkstra(s);
    
    // 输出从起点到各点的最短距离
    for (int i = 1; i <= n; i++)
    {
        cout << dis[i] << ' ';
    }
    cout << endl;
    
    return 0;
}

【运行结果】

6 5
1 2 3 4 5 6
2 5 3 6 7 5
6 3 4 1 0 2 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值