990. 等式方程的可满足性

990. 等式方程的可满足性

给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:"a==b" 或 "a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。

只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。 

 

示例 1:

输入:["a==b","b!=a"]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。

示例 2:

输入:["b==a","a==b"]
输出:true
解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。

示例 3:

输入:["a==b","b==c","a==c"]
输出:true

示例 4:

输入:["a==b","b!=c","c==a"]
输出:false

示例 5:

输入:["c==c","b==d","x!=z"]
输出:true

 

提示:

  1. 1 <= equations.length <= 500
  2. equations[i].length == 4
  3. equations[i][0] 和 equations[i][3] 是小写字母
  4. equations[i][1] 要么是 '=',要么是 '!'
  5. equations[i][2] 是 '='

题目地址

代码:

class Solution {
    public boolean equationsPossible(String[] equations) {
        UnionFind unionFind = new UnionFind(210);
        for(int i=0;i<equations.length;i++) {
            int opt = equations[i].charAt(1);
            int x =equations[i].charAt(0);
            int y =equations[i].charAt(3);
            if (opt=='!'&&x==y)
                return false;
            if (opt=='='){
                unionFind.union(x,y);
            }
        }
        int l=0;
        for(l=0;l<equations.length;l++) {
            int opt = equations[l].charAt(1);
            if (opt=='!'){
                int x =equations[l].charAt(0);
                int y =equations[l].charAt(3);
                if (unionFind.find(x)==unionFind.find(y)){
                    return false;
                }
            }
        }
        return true;
    }
}
class UnionFind {
    public int[] Id;
    public int[] size;

    UnionFind(int n) {
        size = new int[n];
        Id = new int[n];
        for (int i = 1; i < n; i++) {
            Id[i] = i;
        }
    }

    public int find(int a) {
        int x = a;
        while (x != Id[x]) {
            x = Id[x];
        }
        int y = a;
        while (x != Id[y]) {
            int z = Id[y];
            Id[y] = x;
            y = z;
        }
        return x;
    }

    public void union(int a, int b) {
        int findA = find(a);
        int findB = find(b);
        if (findA != findB) {
            if(size[findA]>size[findB]){
                Id[findB] = findA;
                size[findA] += size[findB];
                size[findB] = 0;
            }else{
                Id[findA] = findB;
                size[findB] += size[findA];
                size[findA] = 0;
            }
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值