外观数列是指具有以下特点的整数序列:
d, d1, d111, d113, d11231, d112213111, ...
它从不等于 1 的数字 d 开始,序列的第 n+1 项是对第 n 项的描述。比如第 2 项表示第 1 项有 1 个 d,所以就是 d1;第 2 项是 1 个 d(对应 d1)和 1 个 1(对应 11),所以第 3 项就是 d111。又比如第 4 项是 d113,其描述就是 1 个 d,2 个 1,1 个 3,所以下一项就是 d11231。当然这个定义对 d = 1 也成立。本题要求你推算任意给定数字 d 的外观数列的第 N 项。
输入格式:
输入第一行给出[0,9]范围内的一个整数 d、以及一个正整数 N(<=40),用空格分隔。
输出格式:
在一行中给出数字 d 的外观数列的第 N 项。
输入样例:1 8输出样例:
1123123111
代码:
#include<stdio.h>
int a[100000],b[100000],l1,l2;
int main()
{
int i,j,n,m,k,t,num;
scanf("%d %d",&n,&m);
a[0]=n;
l1=1;
for(i=1;i<m;i++)
{
l2=0;
for(j=0;j<l1;j++)
{
if(j==0)
{
num=1;
}
else
{
if(a[j]==a[j-1])
{
num++;
}
else
{
b[l2++]=a[j-1];
b[l2++]=num;
num=1;
}
}
}
b[l2++]=a[j-1];
b[l2++]=num;
l1=l2;
//printf("%d\n",l1);
for(j=0;j<l2;j++)
{
a[j]=b[j];
}
}
for(i=0;i<l1;i++)
{
printf("%d",a[i]);
}
return 0;
}