神经网络与矩阵表示之间的恩怨情仇

写在前面

  最近准备使用深度神经网络来训练棋类模型,所以准备好好学习一下神经网络各种参数结构;重在使用,所以不会按照顺序详细讲解神经网络过程,本篇博客属于小白个人总结,大佬请直接忽视。

神经网络结构

  DNN主要由很多层的神经网络,每一层中有很多个神经元组成;每个神经元 是神经网络最小组成单位,每个神经元由权重 W 和偏置 b 组成,W为 [n, 1] 的向量,b为常数;每个神经元可以独自完成对输入数据 X 进行 XW+b 运算。如图是一层网络中一个神经元的结构:
单个神经元结构

矩阵表达

  在每层神经网络中矩阵的表达方式为:Z = XW+b

参数矩阵形状矩阵向量注释备注
X[n_batch, n_inputs]n_batch:表示每次输入数据的条数;n_inputs:表示每条数据包含的特征数(Xi 的个数)X数据每一行是一条数据,每一列是数据的一个属性
W[n_inputs,n_neurons]n_inputs:同上 ;n_neurons:表示该层网络的神经元数量W的每一列是每个神经元对应的w向量,每一行应该没有意义
b[1,n_neurons]n_neurons:同上该层神经网络的每个神经元有一个偏置b
Z[n_batch,n_neurons]均同上这里的Z为每一层神经网络的输出,每行为一条数据的n_neurons个神经元的不同输出,每一列为每个神经元对不同数据的计算输出

总结

  每层神经网络中每个神经元都是对每条输入数据在不同属性上(Xi)采取不同的权重计算得到的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值