单源最短路问题BellMan-Ford算法C++实现关键代码

这篇博客介绍了Bellman-Ford算法,它用于计算图中两点之间的最短路径,即使存在负权重边也能处理。算法的时间复杂度是O(|V|*|E|),其中|V|是顶点数,|E|是边数。内容包括算法的基本思想和关键C++代码实现。
摘要由CSDN通过智能技术生成

Bellman-Ford算法,使用于两点间的最短距离计算,存在负边时也可以计算。

复杂度为:O(|V|*|E|)(边的数目乘以点的数目)

基本思想如下:先计算一条边时的最短距离,然后计算2条时最短距离,一直到最短距离不再更新(最大不超过E-1[E为边的数目])

记从起点s出发到顶点i的最短距离为d[i],则下式成立

d[i]=min{d[j]+(从j到i的距离的权值|e=(j,i)∈E)}

设初值的d[s]=0,d[i]=INF(足够大常数),再不断利用上述规则更新即可。

关键C++源码如下

//从顶点from指向定点to的权值为cost的边
struct edge{int from,to,cost;};

edge es[MAX_E];//edge

int d[MAX_V];//the shortest distence
int V,E;//V is the number of voltage,E is the number of edge

//求解从顶点s出发到所有点的最短距离
void shortest_path(int s)
{
    for(int i=0;i<V;i++) d[i]=INF;
    d[s]=0;
    while(true)
    {
        bool update =false;
        for(int i=0;i<E;i++)
        {
            edge e =es[i];
            if(d[e.from ]!=INF&&d[e.to]>d[e.from]+e.cost)
            {
                d[e.to]=d[e.from]+e.cost;
                update =true;
            }
        }
        if(!update) break;
    }
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值