Bellman-Ford算法,使用于两点间的最短距离计算,存在负边时也可以计算。
复杂度为:O(|V|*|E|)(边的数目乘以点的数目)
基本思想如下:先计算一条边时的最短距离,然后计算2条时最短距离,一直到最短距离不再更新(最大不超过E-1[E为边的数目])
记从起点s出发到顶点i的最短距离为d[i],则下式成立
d[i]=min{d[j]+(从j到i的距离的权值|e=(j,i)∈E)}
设初值的d[s]=0,d[i]=INF(足够大常数),再不断利用上述规则更新即可。
关键C++源码如下
//从顶点from指向定点to的权值为cost的边
struct edge{int from,to,cost;};
edge es[MAX_E];//edge
int d[MAX_V];//the shortest distence
int V,E;//V is the number of voltage,E is the number of edge
//求解从顶点s出发到所有点的最短距离
void shortest_path(int s)
{
for(int i=0;i<V;i++) d[i]=INF;
d[s]=0;
while(true)
{
bool update =false;
for(int i=0;i<E;i++)
{
edge e =es[i];
if(d[e.from ]!=INF&&d[e.to]>d[e.from]+e.cost)
{
d[e.to]=d[e.from]+e.cost;
update =true;
}
}
if(!update) break;
}
}