数据库大批量SQL插入性能优化

本文分享了提高MySQL InnoDB插入效率的四种策略:合并SQL插入、使用事务、数据有序插入,以及综合测试结果。通过实例和性能对比,探讨了不同方法在不同数据量下的效果,适合处理大规模数据导入问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。

经过对MySQL InnoDB的一些性能测试,发现一些可以提高insert效率的方法,供大家参考参考。

一、一条SQL语句插入多条数据

常用的插入语句如:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('1', 'userid_1', 'content_1', 1);

修改成:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1);

修改后的插入操作能够提高程序的插入效率。这里第二种SQL执行效率高的主要原因是合并后日志量(MySQL的binlog和innodb的事务让日志)减少了, 降低日志刷盘的数据量和频率,从而提高效率。通过合并SQL语句,同时也能减少SQL语句解析的次数,减少网络传输的IO 。
这里提供一些测试对比数据,分别是进行单条数据的导入与转化成一条SQL语句进行导入,分别测试1百、1千、1万条数据记录。

二、在事务中进行插入处理

START TRANSACTION;
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('1', 'userid_1', 'content_1', 1);
...
COMMIT;

使用事务可以提高数据的插入效率,这是因为进行一个INSERT操作时,MySQL内部会建立一个事务,在事务内才进行真正插入处理操作。通过使用事务可以减少创建事务的消耗, 所有插入都在执行后才进行提交操作 。
这里也提供了测试对比,分别是不使用事务与使用事务在记录数为1百、1千、1万的情况。

三、数据有序插入

数据有序的插入是指插入记录在主键上是有序排列,例如datetime是记录的主键:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('1', 'userid_1', 'content_1', 1);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('2', 'userid_2', 'content_2',2);

修改成:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('1', 'userid_1', 'content_1', 1);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
    VALUES ('2', 'userid_2', 'content_2',2);

由于数据库插入时,需要维护索引数据无序的记录会增大维护索引的成本。 我们可以参照InnoDB使用的B+tree索引,如果每次插入记录都在索引的最后面,索引的定位效率很高,并且对索引调整较小;如果插入的记录在索引中间,需要B+tree进行分裂合并等处理,会消耗比较多计算资源,并且插入记录的索引定位效率会下降,数据量较大时会有频繁的磁盘操作。
下面提供随机数据与顺序数据的性能对比,分别是记录为1百、1千、1万、10万、100万。

从测试结果来看,该优化方法的性能有所提高,但是提高并不是很明显。

四、性能综合测试

这里提供了同时使用上面三种方法进行INSERT效率优化的测试。

从测试结果可以看到,合并数据+事务的方法在较小数据量时,性能提高是很明显的,数据量较大时(1千万以上),性能会急剧下降,这是由于此时数据量超过了innodb_buffer的容量,每次定位索引涉及较多的磁盘读写操作,性能下降较快。而使用合并数据+事务+有序数据的方式在数据量达到千万级以上表现依旧是良好,在数据量较大时,有序数据索引定位较为方便,不需要频繁对磁盘进行读写操作,所以可以维持较高的性能

注意事项:

  1. SQL语句是有长度限制,在进行数据合并在同一SQL中务必不能超过SQL长度限制,通过max_allowed_packet配置可以修改,默认是1M,测试时修改为8M。

  2. 事务需要控制大小,事务太大可能会影响执行的效率。MySQL有innodb_log_buffer_size配置项,超过这个值会把innodb的数据刷到磁盘中,这时,效率会有所下降。所以比较好的做法是,在数据达到这个这个值前进行事务提交。

 

往期精彩内容:

Java知识体系总结(2021版)

Java多线程基础知识总结(绝对经典)

超详细的springBoot学习笔记

常见数据结构与算法整理总结

Java设计模式:23种设计模式全面解析(超级详细)

Java面试题总结(附答案)

 

原创不易,转载自:https://blog.csdn.net/qq_22855325/article/details/76087138

在EF6中,向SQL Server插入大批量数据时,如果遇到性能瓶颈,可以考虑以下几个优化策略: 1. **启用数据库表级锁**:开启BULK INSERT的`WITH (TABLOCK)`选项,可以减少行级别的锁定,提高并发插入速度。但是要注意避免在高并发场景下使用,以免阻塞其他事务。 2. **使用存储过程**:编写自定义的存储过程,直接对数据库进行批量插入,避免通过Entity Framework的间接转换,这可以显著提升速度。存储过程还可以进行更复杂的预处理和优化。 3. **批量插入(BulkCopy)**:使用`SqlBulkCopy`类,它提供了一个低级别的方式来处理大批量数据,直接操作数据库流,速度更快。示例代码: ```csharp using(SqlBulkCopy bulkCopy = new SqlBulkCopy(connectionString)) { bulkCopy.DestinationTableName = "YourTable"; bulkCopy.WriteToServer(entities.AsEnumerable()); } ``` 4. **延迟加载**:在数据获取后,尽量减少立即加载关联的数据,避免懒加载时产生额外的查询。 5. **减少数据库往返**:尽可能地在本地填充并排序数据,再一次性发送给数据库,避免频繁的网络请求。 6. **数据库索引优化**:确保插入的目标表有适当的索引,特别是对于经常作为JOIN条件的字段。 7. **性能监视与调整**:通过SQL Profiler等工具监控插入期间的性能瓶颈,针对性地优化SQL查询。 记住,在进行优化之前,始终要先理解你的应用程序的具体情况,因为优化策略可能因应用场景而异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值