目录
大家好,我是哪吒。
🏆本文收录于,目标检测YOLO改进指南。
本专栏均为全网独家首发,🚀内附代码,可直接使用,改进的方法均是2023年最近的模型、方法和注意力机制。每一篇都做了实验,并附有实验结果分析,模型对比。
一、介绍
1、YOLOv5简介
You Only Look Once (YOLO) 是一种流行的目标检测算法,它是基于深度学习的端到端的目标检测框架,可以在图像上直接预测边界框和类别。
与其前几个版本相比,YOLOv5增加了许多改进:首先,采用了新的backbone网络架构,即CSPNet,可以更好的提取图像特征;其次,YOLOv5在模型训练中采用了自适应精度加速训练(AutoML)、类别平衡滤波器(CBF)等技术,可以有效提高模型性能和训练效率。
2、ResNeXt简介
ResNeXt是ResNet的进一步改进版,它采用了多分支的卷积操作架构,并且使用拼接的方式将多个分支
本文探讨了YOLOv5的局限性,尤其是对小目标和密集目标检测的不足。为解决这些问题,文章提出将ResNeXt与特征金字塔网络(FPN)融合,利用ResNeXt的多分支结构增强特征表达,结合FPN的多尺度信息,提升目标检测的准确性和鲁棒性。通过实验,融合模型在COCO数据集上的mAP@0.5指标达到48.2%,显示了该方法的有效性。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



