华为OD机试 - 红黑图(Java 2023 B卷 100分)

该博客详细介绍了华为在线测评(OD)中的一道红黑树图染色问题,涉及无向图的染色方案计算。博主提供了输入输出描述、解题思路和Java实现代码,最终得出当图中节点为3,边数为3时,染色方案总数为4的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

众所周知红黑树是一种平衡树,它最突出的特性就是不能有两个相邻的红色节点。

那我们定义一个红黑图,也就是一张无向图中,每个节点可能有红黑两种颜色,但我们必须保证没有两个相邻的红色节点。
现在给出一张未染色的图,只能染红黑两色,问总共有多少种染色方案使得它成为一个红黑图。

二、输入描述

第一行两个数字n m,表示图中有n个节点和m条边。

接下来共计m行,每行两个数字s t,表示一条连接节点s和节点t的边,节点编号为[0,n]。

三、输出描述

一个数字表示总的染色方案数。

四、补充说明

0<n<15
0<=m <=n * 30<= s, t < n不保证图连通
保证没有重边和自环

五、解题思路

  1. 读取输入的节点数n和边数m。
  2. 创建一个空的列表list,用于存储边的信息。
  3. 循环m次,读取每条边的起始节点和结束节点,将其存储为一个长度为2的数组,然后添加到列表list中。
  4. 计算红黑图的可能性总数,假设有n个节点,那么总的可能性数为2的n次方。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哪 吒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值