社保政策宣传短视频智能生成平台
题目:基于多模态的社保政策宣传短视频智能制作系统
模型选择:
CLIPViTB/32(政策图文语义理解)
Whispersmall(政策宣讲语音识别)
社保领域微调的BERT(政策条款解析)
行业需求:
各级人社部门需要制作大量社保政策解读短视频,传统视频制作周期长、成本高,亟需通过AI技术实现:
- 自动从冗长政策文件中提取核心条款
- 将生硬的政策条文转化为通俗易懂的短视频
- 适应抖音、微信视频号等新媒体传播特点
系统设计:
- 政策素材预处理模块
文档智能解析:
使用PyMuPDF提取政策PDF中的结构化内容
基于社保BERT模型识别政策重点条款(如"缴费比例调整"、"申领条件变更"等)
宣讲素材处理:
FFmpeg优化抽帧策略(关键政策条款展示画面优先)
语音字幕同步处理(将领导讲话与政策条款精准对齐)
- 多模态特征融合引擎
视觉语义匹配:
CLIP计算政策关键词与素材库画面的相似度(如"养老金"匹配0.82阈值以上的相关图像)
社保知识图谱辅助生成信息图表动画
语音智能处理:
Whisper识别政策宣讲中的专业术语(如"个人账户计发月数")
自动转换为通俗表达(如"退休后每月领取金额")
- 短视频智能生成系统
剪辑逻辑引擎:
结合政策重点检测(PySceneDetect识别条款重要性)
动态生成符合新媒体传播特点的短视频:
前3秒设置悬念(如"你的养老金要涨了!")
中间10秒核心政策解读
最后2秒引导关注和分享
模板智能适配:
根据政策类型自动选择模板(民生类用温暖色调,法规类用严肃风格)
自动添加人社部门官方角标和水印
部署方案:
-
硬件配置:
3060显卡实现6路视频并行生成
使用Redis缓存高频政策术语特征向量 -
系统集成:
开发剪映专业版插件对接宣传部门现有工作流
与政务新媒体平台API直连,实现一键发布 -
性能指标:
单条政策视频生成时间<3分钟
支持日均生成200+条差异化短视频
政策要点覆盖准确率>90%
特色功能:
- 方言适配:自动生成方言版政策解读(需额外训练方言语音模型)
- 问答生成:从视频自动提取常见政策问答图文版
- 效果追踪:采集各平台传播数据反馈优化剪辑策略
本系统将彻底改变传统社保政策宣传模式,实现"政策出台智能解读精准推送效果反馈"的全流程数字化,助力打造"智慧人社"服务新体验。 以上描述用python代码实现
import os
import fitz # PyMuPDF
import ffmpeg
import whisper
import torch
from transformers import AutoTokenizer, AutoModel
from PIL import Image
import numpy as np
import cv2
import json
import random
from datetime import datetime
import redis
from moviepy.editor import VideoFileClip, concatenate_videoclips, vfx, ColorClip, CompositeVideoClip, TextClip
from moviepy.video.fx.all import fadein, fadeout
import pyscenesdetect
# -------------------- 配置 --------------------
PYMUPDF_PATH = '' # 如果需要特定路径
FFMPEG_PATH = 'ffmpeg' # 确保FFmpeg已安装并添加到环境变量
WHISPER_MODEL_NAME = 'small'
SOCBERT_MODEL_PATH = 'path/to/your/socbert-finetuned' # 替换为你的社保领域微调BERT模型路径
CLIP_MODEL_NAME = "openai/clip-vit-base-patch32"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
REDIS_HOST = 'localhost'
REDIS_PORT = 6379
REDIS_DB = 0
# 视频输出目录
OUTPUT_VIDEO_DIR = 'generated_videos'
os.makedirs(OUTPUT_VIDEO_DIR, exist_ok=True)
# 模板视频素材库 (假设路径)
TEMPLATE_VIDEO_DIR = 'template_videos'
LOGO_PATH = 'static/logo.png'
WATERMARK_PATH = 'static/watermark.png'
# 政策类型与模板映射 (需要根据实际素材和风格定义)
POLICY_TEMPLATE_MAPPING = {
"养老金调整": {"video": "warm_template.mp4", "color": (255, 230, 204)}, # 温暖色调
"医疗保险报销": {"video": "warm_template.mp4", "color": (204, 255, 204)},
"失业保险申领": {"video": "neutral_template.mp4", "color": (220, 220, 220)},
"法规解读": {"video": "serious_template.mp4", "color": (240, 240, 255)}, # 严肃风格
"缴费比例调整": {"video": "neutral_template.mp4", "color": (230, 230, 250)},
"申领条件变更": {"video": "neutral_template.mp4", "color": (230, 230, 250)},
"默认": {"video": "default_template.mp4", "color": (255, 255, 255)},
}
# 悬念开头文案库
HOOKE_MESSAGES = [
"你的社保迎来新变化!",
"这项政策与你息息相关!",
"社保福利大升级!",
"事关你的钱袋子!",
"最新社保政策解读!",
]
# -------------------- 模型加载 --------------------
try:
clip_tokenizer = AutoTokenizer.from_pretrained(CLIP_MODEL_NAME)
clip_model = AutoModel.from_pretrained(CLIP_MODEL_NAME).to(DEVICE)
except Exception as e:
print(f"Error loading CLIP model: {e}")
clip_model, clip_tokenizer = None, None
try:
whisper_model = whisper.load_model(WHISPER_MODEL_NAME)
except Exception as e:
print(f"Error loading Whisper model: {e}")
whisper_model = None
try:
socbert_tokenizer = AutoTokenizer.from_pretrained(SOCBERT_MODEL_PATH)
socbert_model = AutoModel.from_pretrained(SOCBERT_MODEL_PATH).to(DEVICE)
except Exception as e:
print(f"Error loading SocBERT model: {e}")
socbert_model, socbert_tokenizer = None, None
# Redis 连接
redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB)
# -------------------- 政策素材预处理模块 --------------------
def extract_policy_text_structure(pdf_path: str) -> dict:
"""使用PyMuPDF提取政策PDF中的结构化内容 (简化版)"""
structure = {"full_text": "", "sections": []}
try:
doc = fitz.open(pdf_path)
for page_num, page in enumerate(doc):
text = page.get_text("blocks")
structure["full_text"] += text
structure["sections"].append({"page": page_num + 1, "content": text})
doc.close()
except Exception as e:
print(f"Error extracting PDF structure: {e}")
return structure
def identify_key_policy_clauses_bert(text: str) -> list:
"""基于社保BERT模型识别政策重点条款 (简化版)"""
if socbert_model is None or socbert_tokenizer is None:
return ["政策条款解析模型未加载"]
# 这里需要根据你的模型输出进行调整,假设模型能预测每个句子的重要性得分
sentences = text.split('\n') # 简单按行分割,实际应使用更复杂的句子分割
important_clauses = []
for sentence in sentences:
inputs = socbert_tokenizer(sentence, return_tensors="pt", truncation=True, max_length=128).to(DEVICE)
with torch.no_grad():
outputs = socbert_model(**inputs)
# 假设模型输出一个表示重要性的logits
importance_score = outputs.logits.mean().item() # 简单取平均
if importance_score > 0.5: # 设定一个阈值
important_clauses.append(sentence.strip())
return important_clauses
# -------------------- 宣讲素材处理 --------------------
def optimize_frame_extraction(video_path: str, key_clauses: list) -> list:
"""FFmpeg优化抽帧策略 (关键政策条款展示画面优先 - 简化版)"""
# 实际应用中需要更复杂的逻辑来关联关键条款和视频内容
try:
probe = ffmpeg.probe(video_path)
duration = float(probe['format']['duration'])
frame_rate = 25 # 假设目标帧率
num_frames = int(duration * frame_rate)
timestamps = np.linspace(0, duration, num_frames)
return [str(t) for t in timestamps[::50]] # 简单地每隔一定帧提取
except ffmpeg.Error as e:
print(f"FFmpeg error: {e.stderr.decode('utf8')}")
return []
def synchronize_speech_with_text(audio_path: str, policy_clauses: list) -> list:
"""语音字幕同步处理 (简化版 - 依赖Whisper识别)"""
if whisper_model is None:
return [{"text": clause, "start": 0, "end": 5} for clause in policy_clauses] # 简单分配时间
try:
transcript = whisper_model.transcribe(audio_path)
# 这里需要更复杂的逻辑将Whisper的识别结果与政策条款对齐
# 简单的做法是按句分配时间
segments = []
total_duration = sum(seg['end'] - seg['start'] for seg in transcript['segments'])
clause_duration = total_duration / len(policy_clauses) if policy_clauses else 5
current_time = 0
for clause in policy_clauses:
segments.append({"text": clause, "start": current_time, "end": current_time + clause_duration})
current_time += clause_duration
return segments
except Exception as e:
print(f"Whisper error: {e}")
return [{"text": clause, "start": 0, "end": 5} for clause in policy_clauses]
# -------------------- 多模态特征融合引擎 --------------------
def calculate_clip_similarity(text: str, image_path: str) -> float:
"""CLIP计算政策关键词与素材库画面的相似度 (简化版)"""
if clip_model is None or clip_tokenizer is None:
return 0.0
try:
image = Image.open(image_path).convert("RGB")
text_inputs = clip_tokenizer([text], return_tensors="pt").to(DEVICE)
image_inputs = clip_tokenizer.preprocess(image).unsqueeze(0).to(DEVICE)
with torch.no_grad():
text_features = clip_model.get_text_features(**text_inputs)
image_features = clip_model.get_image_features(image)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
similarity = (text_features @ image_features.T).squeeze().item()
return similarity
except Exception as e:
print(f"CLIP similarity error: {e}")
return 0.0
def generate_infographic_animation(policy_clause: str) -> str:
"""社保知识图谱辅助生成信息图表动画 (占位符)"""
# 实际需要对接知识图谱和动画生成工具
return f"infographic_animation_for_{policy_clause}.mp4"
def translate_professional_term(term: str) -> str:
"""Whisper识别政策宣讲中的专业术语并自动转换为通俗表达 (简化版)"""
# 这里需要一个社保专业术语到通俗表达的映射或更复杂的NLP模型
term_mapping = {
"个人账户计发月数": "退休后每月领取金额的计算系数",
# 更多术语映射
}
return term_mapping.get(term, term)
# -------------------- 短视频智能生成系统 --------------------
def detect_key_scenes(video_path: str) -> list:
"""结合政策重点检测 (PySceneDetect识别条款重要性 - 简化版)"""
# 实际需要分析视频内容与政策条款的关联
detector = pyscenesdetect.ContentDetector()
scene_list = detector.detect_scenes_file(video_path)
key_frames = [scene[0].get_frames() / detector.get_framerate() for scene in scene_list]
return key_frames[:3] # 返回前3个关键场景的时间戳
def generate_short_video(policy_clauses: list, audio_path: str, template_config: dict, output_path: str):
"""动态生成符合新媒体传播特点的短视频"""
clips = []
# 1. 悬念开头
hook_text = random.choice(HOOKE_MESSAGES)
color_clip = ColorClip(size=(1280, 720), color=template_config['color'], duration=3)
text_clip_hook = TextClip(hook_text, fontsize=60, color='black', font='SimHei').set_pos('center').set_duration(3)
clips.append(CompositeVideoClip([color_clip, text_clip_hook]).fx(fadein, 1).fx(fadeout, 1))
# 2. 核心政策解读 (结合语音和字幕)
subtitles = synchronize_speech_with_text(audio_path, policy_clauses[:3]) # 取前3条核心条款
audio_clip = VideoFileClip(audio_path).audio
video_clips = []
for sub in subtitles:
duration = sub['end'] - sub['start']
text_clip = TextClip(sub['text'], fontsize=48, color='black', font='SimHei', size=(1280 * 0.8, None), method='caption').set_pos(('center', 'bottom')).set_duration(duration)
color_bg = ColorClip(size=(1280, 720), color=template_config['color'], duration=duration)
video_clips.append(CompositeVideoClip([color_bg, text_clip]).set_start(sub['start']).set_end(sub['end']))
if video_clips:
core_video = concatenate_videoclips(video_clips, method="compose")
core_video = core_video.set_audio(audio_clip)
clips.append(core_video.fx(fadein, 0.5).fx(fadeout, 0.5))
# 3. 引导关注和分享
outro_duration = 2
color_clip_outro = ColorClip(size=(1280, 720), color=template_config['color'], duration=outro_duration)
text_clip_outro = TextClip("关注我们,了解更多社保政策!", fontsize=48, color='black', font='SimHei').set_pos('center').set_duration(outro_duration)
clips.append(CompositeVideoClip([color_clip_outro, text_clip_outro]).fx(fadein, 0.5))
# 添加官方角标和水印
final_clip = concatenate_videoclips(clips)
if os.path.exists(LOGO_PATH):
logo = (ImageClip(LOGO_PATH)
.set_duration(final_clip.duration)
.resize(height=80)
.set_pos(('right', 'top')))
final_clip = CompositeVideoClip([final_clip, logo])
if os.path.exists(WATERMARK_PATH):
watermark = (ImageClip(WATERMARK_PATH)
.set_duration(final_clip.duration)
.resize(width=120)
.set_pos(('left', 'bottom')))
final_clip = CompositeVideoClip([final_clip, watermark])
final_clip.write_videofile(output_path, codec='libx264', audio_codec='aac', fps=24)
def select_template_for_policy(policy_clause: str) -> dict:
"""根据政策类型自动选择模板 (简化版)"""
for keyword, config in POLICY_TEMPLATE_MAPPING.items():
if keyword in policy_clause:
return config
return POLICY_TEMPLATE_MAPPING["默认"]
# -------------------- 系统集成 (占位符 - 需要对接具体平台API和剪映插件) --------------------
def create_jianying_plugin(output_video_path: str, policy_details: dict) -> str:
"""开发剪映专业版插件对接宣传部门现有工作流 (占位符)"""
# 生成包含视频路径和政策信息的插件数据或脚本
return f"jianying_plugin_data_for_{os.path.basename(output_video_path)}"
def publish_to_social_media(output_video_path: str, platform_api: str, metadata: dict) -> bool:
"""与政务新媒体平台API直连,实现一键发布 (占位符)"""
# 调用平台API上传视频和元数据
print(f"发布视频 {output_video_path} 到 {platform_api},元数据: {metadata}")
return True
# -------------------- 性能指标 (代码层面体现 - 并行处理框架) --------------------
import concurrent.futures
def process_policy_and_generate_video(policy_pdf_path: str, audio_path: str, output_name: str):
"""处理单个政策并生成视频的完整流程"""
print(f"开始处理: {policy_pdf_path}")
policy_structure = extract_policy_text_structure(policy_pdf_path)
key_clauses = identify_key_policy_clauses_bert(policy_structure["full_text"])
print(f"识别到关键条款: {key_clauses[:3]}")
template_config = select_template_for_policy(key_clauses[0] if key_clauses else "默认")
output_video_path = os.path.join(OUTPUT_VIDEO_DIR, f"{output_name}.mp4")
generate_short_video(key_clauses, audio_path, template_config, output_video_path)
print(f"视频生成完成: {output_video_path}")
return output_video_path, key_clauses
def batch_process_policies(policy_audio_pairs: list):
"""批量处理政策并生成视频 (使用线程池实现简单并行)"""
results = []
with concurrent.futures.ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(process_policy_and_generate_video, pdf_path, audio_path, f"policy_{i}") for i, (pdf_path, audio_path) in enumerate(policy_audio_pairs)]
for future in concurrent.futures.as_completed(futures):
try:
output_path, clauses = future.result()
results.append({"video_path": output_path, "clauses": clauses})
except Exception as e:
print(f"处理失败: {e}")