hdu 3549 isap

本文深入讲解ISAP算法的原理及实现细节,特别是gap优化部分,通过最短路径的概念帮助理解算法流程。提供C++实现代码示例。

http://www.renfei.org/blog/isap.html好的教程

看完算法描述再看我下面所讲绝对全懂。。。。。。

isap算法中我觉得不好理解的地方就是gap优化其他都好说。。现在就谈谈gap优化:

1.因为你是走最短路那么如果从起点走到某个点u这个点到终点的距离是d[u]此时如果num[d[u]]--后等于0根据算法的描述此时你要更新然后回退.这样造成的结果就是,你最多就只能更新d[k]>d[u]的点而且更新后这些点的d[k]越来越大,反正你只能更新d[k]>d[u]的点d[u]更新后也是大于原值的因为是最短路嘛。。。,为什么?(用起点到u是最短路这条线索推理一下就好了其它点不在最短路上说明d[k]>d[u])

这样造成的结果就是永远到不了终点了。。。。

总之关键就是注意最短路这条线索,然后注意算法描述是先回退,然后更新。。仔细想想就明白了。。。


isap就三部 1.前进 2.更新(注意gap的更新,注意父亲的更新).3 后退(注意起点不能后退)...什么编程复杂度相对于伸展树,树套树那些根本不是事儿。。。。。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
struct edgee
{
	int from, cap, to, rev;
};
struct dist
{
	int value, fa, edgenum;
};
edgee edge[2000];
int first[17],nextt[2000],change[17],num[2000];
dist d[17];
int n, m,s,t;
int  minflow = 1000000000;
int tot;
int ans;
void addedge(int from, int to, int cap)
{
	edge[tot].from = from;
	edge[tot].to = to;
	edge[tot].cap = cap;
	edge[tot].rev = tot + 1;
	nextt[tot] = first[from];
	first[from] = tot;
	tot++;
	edge[tot].from = to;
	edge[tot].to = from;
	edge[tot].cap = 0;
	edge[tot].rev = tot - 1;
	nextt[tot] = first[to];
	first[to] = tot;
	tot++;
}

void bfs(int t)
{
	for (int i = 1; i <= n; i++)
		d[i].value = 1000000000;
	d[t].value = 0;
	num[0] = 1;
	queue<int>que;
	que.push(t);
	while (!que.empty())
	{
		int now = que.front();
		que.pop();
		for (int i = first[now]; i != -1; i = nextt[i])
		{
			int to = edge[i].to;
			if (d[to].value == 1000000000)//bfs的时候并不需要流量限制如果那样的话不能构成最短路开始时候,dinic才需要考虑流量
			{
				d[to].value = d[now].value + 1;
				d[now].fa =to; d[now].edgenum = edge[i].rev;//忘.....
				if(d[to].value<=n)num[d[to].value]++;//这步忘了
				que.push(to);
			}
		}
	}
}
void augument()
{
	ans += minflow;
	for (int i = t; i != s; i = d[i].fa)
	{
		int num = d[i].edgenum; int rev = edge[num].rev;
		edge[num].cap -= minflow;
		edge[rev].cap += minflow;
	}
	minflow = 1000000000;
}
void isap(int s)
{
	int temp = s;
	while (d[s].value <= n)//其实很遗憾的是d[s]永远也不会等于n,最多只能为n-1或者是1000000000;
	{
		if (temp == t)
		{
			augument();
			temp = s;
		}
		bool isahead = false;//必须要有个变量。。
		for (int &i = change[temp]; i != -1; i = nextt[i])
		{
			int to = edge[i].to;
			if (d[temp].value == d[to].value + 1 && edge[i].cap > 0)
			{
				minflow = min(minflow, edge[i].cap);
				d[to].fa = temp;
				d[to].edgenum = i;
				temp = to;
				isahead = true;
				break;
			}
		}
		if (!isahead)
		{
			int mindist = 1000000000;
			for (int i = first[temp]; i != -1; i = nextt[i])
			{
				if (d[edge[i].to].value < mindist&&edge[i].cap>0)
				{
					mindist = min(mindist,d[edge[i].to].value);
				}
			}
			if (d[temp].value <=n)num[d[temp].value]--;
			if (num[d[temp].value] == 0)break;
			change[temp] = first[temp];//注意这部
			d[temp].value = mindist + 1;//
			if (d[temp].value <=n)num[d[temp].value]++;
			if (temp != s)//注意这部
			temp = d[temp].fa;
		}
	}
}
int main()
{

	int times;
	scanf("%d", ×);
	int realtimes = 1;
	while (realtimes<=times)
	{
		tot = 0;
		ans = 0;
		minflow = 1000000000;
		scanf("%d%d", &n, &m);
		s = 1; t = n;
		
		for (int i = 1; i <= n; i++)first[i] = -1;
		for (int i = 0; i < m; i++)
		{
			int a, b, c;
			scanf("%d%d%d", &a, &b, &c);
			addedge(a, b, c);
		}
		for (int i = 1; i <= n; i++)change[i] = first[i];//准备当前弧优化
		for (int i = 0; i <= n; i++)num[i] = 0;//这里注意顺序先开始写反了,debug了好久....
		bfs(n);
		//for (int i = 1; i <= n; i++)
			//cout << d[i].value << endl;
		isap(1);
		printf("Case %d: %d\n",realtimes, ans);
		realtimes++;
	}
	return 0;
}

内容概要:本文档聚焦于“博士论文复现”项目,重点围绕光伏并网逆变器的阻抗建模与扫频验证方法展开,利用Simulink进行系【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)统建模与仿真,涵盖锁相环和电流环控制环节,旨在分析并网系统的稳定性。文档不仅提供具体的技术实现路径,还强调科研过程中逻辑思维、创新意识与借助已有成果的重要性,提倡系统性学习与实践结合。此外,文中列举了多个相关科研方向的复现案例与资源链接,涵盖虚拟电厂调度、风光制氢、电力系统优化等多个前沿领域,形成一个综合性科研辅助资料集合。; 适合人群:具备电力电子、自动控制或新能源系统背景的研究生、博士生及科研人员,熟悉MATLAB/Simulink仿真环境,有志于从事并网逆变器稳定性分析或相关课题研究的人员。; 使用场景及目标:①复现博士论文中的光伏并网逆变器阻抗建模与扫频分析过程,掌握其理论基础与仿真技巧;②深入理解锁相环与电流环在并网系统稳定性中的作用;③获取相关科研项目的代码与数据资源,用于学术研究、论文撰写或工程验证。; 阅读建议:建议按照文档提供的目录顺序系统学习,优先下载并查看网盘中的完整资源,结合Simulink模型与代码进行实操演练,注重理论与仿真的对照分析,以加深对阻抗建模与稳定性判据的理解。
内容概要:本文介绍了基于粒子群优化算法【故障定位】基于粒子群优化算法的故障定位及故障区段研究【IEEE33节点】(Matlab代码实现)(PSO)在IEEE33节点系统上进行故障定位及故障区段判定的研究,采用Matlab代码实现。通过构建配电网故障定位的数学模型,利用粒子群算法的全局寻优能力,快速准确地识别故障发生的位置与范围。文中详细阐述了算法原理、适应度函数设计、约束条件处理及仿真流程,并结合IEEE33节点标准测试系统验证了方法的有效性和鲁棒性。此外,文档还列举了多个相关科研方向及Matlab/Simulink仿真实现案例,涵盖智能优化、机器学习、电力系统管理、路径规划等多个领域,展示了广泛的科研应用场景和技术支持能力。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、故障诊断相关工作的工程技术人员。; 使用场景及目标:① 掌握基于智能优化算法的配电网故障定位方法;② 学习如何将粒子群算法应用于实际电力系统问题建模与求解;③ 借助Matlab实现算法仿真,提升科研与工程实践能力;④ 拓展对电力系统故障诊断、优化算法应用及综合能源系统仿真的理解。; 阅读建议:建议读者结合提供的Matlab代码进行实操演练,深入理解算法实现细节与参数设置,同时可参考文档中列出的其他研究方向拓展思路,适用于科研项目开发、论文复现与算法改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值