题目描述
给定两个字符串 s1 和 s2,写一个函数来判断 s2 是否包含 s1 的排列。 换句话说,第一个字符串的排列之一是第二个字符串的 子串 。 示例 1: 输入: s1 = "ab" s2 = "eidbaooo" 输出: True 解释: s2 包含 s1 的排列之一 ("ba"). 示例 2: 输入: s1= "ab" s2 = "eidboaoo" 输出: False 提示: 输入的字符串只包含小写字母 两个字符串的长度都在 [1, 10,000] 之间
解题思路
初始时,仅统计 s1 中的字符,则 cnt的值均不为正,且元素值之和为 −n。 然后用两个指针 left 和 right表示考察的区间 [left,right]。right 每向右移动一次,就统计一次进入区间的字符 xxx。为保证 cnt 的值不为正,若此时 cnt[x]>0,则向右移动左指针,减少离开区间的字符的 cnt 值直到 cnt[x]≤0。 注意到 [left,right] 的长度每增加 111,cnt 的元素值之和就增加 111。当 [left,right] 的长度恰好为 nnn 时,就意味着 cnt 的元素值之和为 0。由于 cnt 的值不为正,元素值之和为 0 就意味着所有元素均为 0,这样我们就找到了一个目标子串。
代码
class Solution {
public:
bool checkInclusion(string s1, string s2) {
int n = s1.length(), m = s2.length();
if (n > m) {
return false;
}
vector<int> cnt(26);
for (int i = 0; i < n; ++i) {
--cnt[s1[i] - 'a'];
}
int left = 0;
for (int right = 0; right < m; ++right) {
int x = s2[right] - 'a';
++cnt[x];
while (cnt[x] > 0) {
--cnt[s2[left] - 'a'];
++left;
}
if (right - left + 1 == n) {
return true;
}
}
return false;
}
};
复杂度分析
时间复杂度:O(n+m+∣Σ∣) 创建 cnt 需要 O(∣Σ∣) 的时间。 遍历 s1 需要 O(n) 的时间。 双指针遍历 s2 时,由于 left 和 right 都只会向右移动,故这一部分需要O(m) 的时间。 空间复杂度:O(∣Σ∣)。