动态规划—最长公共子序列(leetcode 1143)

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。
 

提示:

1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。

问题分析

最长公共子序列问题是典型的二维动态规划问题。

假设字符串 text1 和 tex2 的长度分别为 m 和 n,创建 m+1 行 n+1 列的二维数组 dp,其中dp[i][j] 表示 text1[0:i] 和text2[0:j] 的最长公共子序列的长度。上述表示中text1[0:i] 表示text1的长度为 i 的前缀,text2[0:j] 表示 text2 的长度为 j 的前缀。考虑动态规划的边界情况:

当 i=0 时,text1[0:i] 为空,空字符串和任何字符串的最长公共子序列的长度都是 0,因此对任意 0≤j≤n,有 dp[0][j]=0;当 j=0 时,text2[0:j] 为空,同理可得,对任意 0≤i≤m,

有dp[i][0]=0。因此动态规划的边界情况是:当 i=0 或 j=0 时,dp[i][j]=0。

当 i>0 且 j>0 时,考虑 dp[i][j] 的计算:

当 text[i-1]=texti[j-1] 时,将这两个相同的字符称为公共字符,考虑 text1[0:i-1] 和 text 
2[0:j−1] 的最长公共子序列,再增加一个字符(即公共字符)即可得到 text1[0:i] 和 text 
2[0:j] 的最长公共子序列,因此dp[i][j]= dp[i-1][j-1]+1。当text[i-1] !=text2[j-1] 时,考虑以下两项:
 text1[0:i−1] 和text2[0:j]的最长公共子序列;text1[0:i] 和 text2[0:j-1]的最长公共子序列。要得到text1[0:i]和text2[0:j] 的最长公共子序列,应取两项中的长度较大的一项,因此

dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

由此可以得到如下状态转移方程:

\textit{dp}[i][j] = \begin{cases} \textit{dp}[i-1][j-1]+1, & \textit{text}_1[i-1]=\textit{text}_2[j-1] \\ \max(\textit{dp}[i-1][j],\textit{dp}[i][j-1]), & \textit{text}_1[i-1] \ne \textit{text}_2[j-1] \end{cases}

最终计算得到 \textit{dp}[m][n] 即为 \textit{text}_1 和 \textit{text}_2 的最长公共子序列的长度。

代码

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int n = text1.size();
        int m = text2.size();

        vector<vector<int>> dp(n+1, vector<int>(m+1));

        for(int i = 1; i <= n; ++i) {
            for(int j = 1; j <= m; ++j) {
                // text1, text2的下标是从0开始的,text1[i-1] text2[j-1]即推导中的 text1[i] text2[j]
                if(text1[i-1] == text2[j-1]) {
                    dp[i][j] = dp[i-1][j-1]+1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[n][m];
    }
};

复杂度分析

时间复杂度:O(mn),其中 m 和 n 分别是字符串\textit{text}_1\textit{text}_2的长度。二维数组 \textit{dp}有 m+1 行和 n+1 列,需要对\textit{dp} 中的每个元素进行计算。

空间复杂度:O(mn),其中 m 和 n 分别是字符串 \textit{text}_1 和 \textit{text}_2的长度。创建了m+1 行 n+1 列的二维数组 \textit{dp}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值