动态规划—两个字符串的删除操作(leetcode 583)

题目描述

给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

示例:

输入: "sea", "eat"
输出: 2
解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"

提示:

给定单词的长度不超过500。
给定单词中的字符只含有小写字母。

问题分析

方法一:最长公共子序列
给定两个字符串word1和word2,分别删除若干字符之后使得两个字符串相同,则剩下的字符为两个字符串的公共子序列。为了使删除操作的次数最少,剩下的字符应尽可能多。当剩下的字符为两个字符串的最长公共子序列时,删除操作的次数最少。因此,可以计算两个字符串的最长公共子序列的长度,然后分别计算两个字符串的长度和最长公共子序列的长度之差,即为两个字符串分别需要删除的字符数,两个字符串各自需要删除的字符数之和即为最少的删除操作的总次数。关于最长公共子序列,请读者参考「1143. 最长公共子序列」。计算最长公共子序列的长度的方法见「1143. 最长公共子序列的官方题解」,这里不再具体阐述。假设字符串word1和word2的长度分别为 m 和 n,计算字符串word1和word2的最长公共子序列的长度,记为 lcs,则最少删除操作次数为 m−lcs+n−lcs。

代码

class Solution {
public:
    int minDistance(string word1, string word2) {

        int n = word1.size();
        int m = word2.size();

        vector<vector<int>> dp(n+1, vector<int>(m+1));

        for(int i =1; i <= n; ++i) {
            for(int j = 1; j <= m; ++j) {
                if(word1[i-1] == word2[j-1]) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }

        return n + m - dp[n][m]*2;
    }
};

复杂度分析

时间复杂度:O(mn),其中 m 和 n 分别是字符串word1和word2的长度。二维数组 dp 有 m+1 行和 n+1 列,需要对dp 中的每个元素进行计算。

空间复杂度:O(mn),其中 m 和 n分别是字符串word1和 word2的长度。创建了 m+1 行 n+1列的二维数组dp。

 方法二

方法二:动态规划
也可以直接使用动态规划计算最少删除操作次数,不需要计算最长公共子序列的长度。假设字符串 word1和 word2的长度分别为 m 和 n,创建 m+1 行 n+1 列的二维数组 dp,其中 dp[i][j] 表示使word1[0:i] 和word2[0:j] 相同的最少删除操作次数。上述表示中,word1[0:i] 表示word1的长度为 ii 的前缀,word2[0:j] 表示word2的长度为 j 的前缀。动态规划的边界情况如下:当 i=0 时,word1[0:i] 为空,空字符串和任何字符串要变成相同,只有将另一个字符串的字符全部删除,因此对任意 0≤j≤n,有dp[0][j]=j;当 j=0时,word2[0:j] 为空,同理可得,对任意  0≤i≤m,有 dp[i][0]=i。当 i>0 且 j>0 时,考虑dp[i][j] 的计算:当word 1[i−1]=word2[j−1] 时,将这两个相同的字符称为公共字符,考虑使word1[0:i−1] 和 word2[0:j−1] 相同的最少删除操作次数,增加一个字符公共字符之后,最少删除操作次数不变,因此\textit{dp}[i][j]=\textit{dp}[i-1][j-1]

\textit{word}_1[i-1] \ne \textit{word}_2[j-1]时,考虑以下两项:使word1[0:i−1] 和word2[0:j] 相同的最少删除操作次数,加上删除word1[i−1] 的 1 次操作;使word1[0:i] 和word2[0:j−1] 相同的最少删除操作次数,加上删除 word2[j−1] 的 1次操作。要得到使 word1[0:i] 和 word2[0:j] 相同的最少删除操作次数,应取两项中较小的一项,因此 \textit{dp}[i][j]=\min(\textit{dp}[i-1][j]+1,\textit{dp}[i][j-1]+1)=\min(\textit{dp}[i-1][j],\textit{dp}[i][j-1])+1

由此可以得到如下状态转移方程:

\textit{dp}[i][j] = \begin{cases} \textit{dp}[i-1][j-1], & \textit{word}_1[i-1]=\textit{word}_2[j-1] \\ \min(\textit{dp}[i-1][j],\textit{dp}[i][j-1])+1, & \textit{word}_1[i-1] \ne \textit{word}_2[j-1] \end{cases}
最终计算得到dp[m][n] 即为使word 1和word 2相同的最少删除操作次数。

代码2

 

class Solution {
public:
    int minDistance(string word1, string word2) {

        int n = word1.size();
        int m = word2.size();

        vector<vector<int>> dp(n+1, vector<int>(m+1));

        for(int i = 0; i <= n; ++i) {
            dp[i][0] = i;
        }
        for(int j =0; j <= m; ++j) {
            dp[0][j] = j;
        }

        for(int i = 1; i <= n; ++i) {
            for(int j = 1; j <= m; ++j) {
                if(word1[i-1] == word2[j-1]) {
                    dp[i][j] = dp[i-1][j-1];
                } else {
                    dp[i][j] = min(dp[i-1][j]+1, dp[i][j-1]+1);
                }
            }
        }
        return dp[n][m];
    }
};

复杂度分析2

时间复杂度:O(mn),其中 m 和 n 分别是字符串word1和word2的长度。二维数组dp 有 m+1 行和 n+1 列,需要对 dp 中的每个元素进行计算。

空间复杂度:O(mn),其中 m 和 n分别是字符串word1和word2的长度。创建了 m+1 行 n+1 列的二维数组dp。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值