1、题目描述
我们将给定的数组 A 分成 K 个相邻的非空子数组 ,我们的分数由每个子数组内的平均值的总和构成。计算我们所能得到的最大分数是多少。
注意我们必须使用 A 数组中的每一个数进行分组,并且分数不一定需要是整数。
示例:
输入:
A = [9,1,2,3,9]
K = 3
输出: 20
解释:
A 的最优分组是[9], [1, 2, 3], [9]. 得到的分数是 9 + (1 + 2 + 3) / 3 + 9 = 20.
我们也可以把 A 分成[9, 1], [2], [3, 9].
这样的分组得到的分数为 5 + 2 + 6 = 13, 但不是最大值.说明:
1 <= A.length <= 100.
1 <= A[i] <= 10000.
1 <= K <= A.length.
答案误差在 10^-6 内被视为是正确的。
2、问题分析
我们可以使用动态规划来解决这个问题。设 dp(i, k) 表示将数组 A 中的前 i 个元素 A[:i] 分成 k 个相邻的非空子数组,可以得到的最大分数。dp(i, k) 的值可以通过 dp(j, k - 1) 转移而来,其中 j < i,状态转移方程为:
dp(i, k) = max(dp(j, k - 1) + average(j + 1, i))
dp(i, 0) = average(0, i)其中 average(j + 1, i) 表示 A[j + 1] 到 A[i] 的平均值 (A[j + 1] + A[j + 2] + ... + A[i]) / (i - j)。我们可以通过预处理出前缀和 P[x + 1] = A[0] + A[1] + ... + A[x],从而用 average(j + 1, i) = (P[i + 1] - P[j + 1]) / (i - j) 在常数时间内得到平均值。
3、代码
class Solution {
public:
double largestSumOfAverages(vector<int>& nums, int k) {
int n = nums.size();
vector<vector<double>> dp(n, vector<double>(k, 0.0));
vector<int> preSum(n, 0);
preSum[0] = nums[0];
for (int i = 1; i < n; ++i) {
preSum[i] += preSum[i - 1] + nums[i];
}
for (int i = 0; i < n; ++i) {
dp[i][0] = (double)preSum[i] / (double)(i + 1);
}
for (int p = 1; p < k; ++p) {
for (int i = 0; i < n; ++i) {
for (int j = 1; j <= i; ++j) {
double avg = (double)(preSum[i] - preSum[j-1]) / (double)(i - j + 1);
dp[i][p] = max(dp[i][p], dp[j-1][p - 1] + avg);
}
}
}
return dp[n - 1][k-1];
}
};
4、复杂度分析
时间复杂度:O(K∗N^2),其中 N 是数组
A
的长度。空间复杂度:O(K*N)。