【区间dp、字符串处理】P4290 [HAOI2008] 玩具取名 题解

前言

毒瘤的字符串杂题

题意

给定 A , B , C , D ( A , B , C , D ≤ 16 ) A,B,C,D(A,B,C,D \leq 16) A,B,C,D(A,B,C,D16) 四个数,依次代表 W I N G 四个字母分别能用哪些含有 W I N G 四个字母且长度为 2 2 2 的字符串表示,如以下输入样例:

1 1 1 1
II
WW
WW
IG
IIII

代表:
每一个 W 可替换为 II,每一个 IN 可以替换为 WW,每一个 G 都可以替换为 IG。最后给定一个字符串 L L L,问 WING 中哪些字母能够通过多次以上的替换变为所求的字符串(长度 n n n 小于 200 200 200),若无则 输出 The name is wrong!

如样例中 IIII->WW->IIIII->WW->N 故输出 IN

思路

显而易见区间dp(tag就是区间dp,问题是如何转移)。

首先对于每一个 A B C D ABCD ABCD 写一个对应的输入。开一个 map P P P表示一个长度为 2 2 2 的字符串可以由那些字母变过来,代码如下:

// 主函数外面
map<string,string>P;
void input(int x,string y) {
	string S;
	for(int i = 1;i <= x;i++) {
		cin >> S;
		P[S] += y;
	}
}

// 主函数输入
scanf("%lld %lld %lld %lld",&a,&b,&c,&d);
input(a,"W"),input(b,"I"),input(c,"N"),input(d,"G");

d p i , j dp_{i,j} dpi,j 表示区间 i i i j j j 可由那些字母变来,则 d p i , i = L i dp_{i,i} = L_i dpi,i=Li

对于每一个长度不小于 2 2 2 的串,可由以下变来:

d p i , k , d p k + 1 , j dp_{i,k},dp_{k+1,j} dpi,k,dpk+1,j ,代表字符串分为 [ i , k ] [i,k] [i,k] [ k + 1 , j ] [k+1,j] [k+1,j] 两个部分。则如果 d p [ i , k ] = I , d p [ k + 1 , j ] = I dp[i,k] = I,dp[k+1,j] = I dp[i,k]=I,dp[k+1,j]=I,则 d p i , j dp_{i,j} dpi,j 中必有 p I I p_{II} pII 这一项:

bool w_1,i_1,n_1,g_1;
void check(string p,string q) {
	int p1 = p.size(),q1 = q.size();
	for(int i = 0;i < p1;i++) {
		for(int j = 0;j < q1;j++) {
			string new_str = p.substr(i,1) + q.substr(j,1);
			new_str = P[new_str];
			if(new_str.find("W") <= new_str.size()) w_1 = true;
			if(new_str.find("I") <= new_str.size()) i_1 = true;
			if(new_str.find("N") <= new_str.size()) n_1 = true;
			if(new_str.find("G") <= new_str.size()) g_1 = true;
		}
	}
} 

在这里插入图片描述

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int a,b,c,d;
map<string,string>P;
void input(int x,string y) {
	string S;
	for(int i = 1;i <= x;i++) {
		cin >> S;
		P[S] += y;
	}
}
string L;
int n;
string dp[205][205];
bool w_1,i_1,n_1,g_1;
void check(string p,string q) {
	int p1 = p.size(),q1 = q.size();
	for(int i = 0;i < p1;i++) {
		for(int j = 0;j < q1;j++) {
			string new_str = p.substr(i,1) + q.substr(j,1);
			new_str = P[new_str];
			if(new_str.find("W") <= new_str.size()) w_1 = true;
			if(new_str.find("I") <= new_str.size()) i_1 = true;
			if(new_str.find("N") <= new_str.size()) n_1 = true;
			if(new_str.find("G") <= new_str.size()) g_1 = true;
		}
	}
} 
signed main() {
	scanf("%lld %lld %lld %lld",&a,&b,&c,&d);
	input(a,"W"),input(b,"I"),input(c,"N"),input(d,"G");
	cin >> L,n = L.size();
	L = " " + L;
	for(int i = 1;i <= n;i++) dp[i][i] = L[i];
	for(int i = 2;i <= n;i++) {
		for(int l = 1;l + i - 1 <= n;l++) {
			int r = l + i - 1;
			w_1 = false,i_1 = false,n_1 = false,g_1 = false; 
			for(int k = l;k < r;k++) {
				if(dp[l][k] == "The name is wrong!" or dp[k + 1][r] == "The name is wrong!") continue;
				check(dp[l][k],dp[k + 1][r]); 
				if(w_1 and i_1 and n_1 and g_1) break;
			}
			if(!(w_1 or i_1 or n_1 or g_1)) dp[l][r] = "The name is wrong!";
			if(w_1) dp[l][r] += "W";
			if(i_1) dp[l][r] += "I";
			if(n_1) dp[l][r] += "N";
			if(g_1) dp[l][r] += "G";
		}
	}
	cout<<dp[1][n];
    return 0;
}
这道题目还可以使用树状数组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到树状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设树状数组的大小为 $n$,则树状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入树状数组中,而不是从左往右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值