Gunicorn生产实践

Gunicorn生产实践

Gunicorn是Python Web应用的进程管理服务器,核心负责多进程管控(如Worker崩溃自动重启、平滑重启),适配WSGI/ASGI应用,常搭配Uvicorn管理异步进程,保障生产环境服务稳定。

🎯 一、核心定位

工具 核心角色 核心能力 适用场景
Gunicorn 进程管理服务器(WSGI/ASGI) 多进程管控、容错、平滑重启、日志聚合 生产环境进程管理+运维管控
Uvicorn 异步协议服务器(ASGI) 处理异步请求、HTTP/2、WebSocket 开发环境调试、生产环境请求处理内核

核心原则:生产环境异步应用必须用 Gunicorn(管进程/日志) + Uvicorn(处理请求);同步应用可单独用 Gunicorn;开发环境仅用 Uvicorn。


⚙️ 二、环境准备

📦 1. 安装依赖

# 基础安装(同步应用:Flask/Django 同步)
pip install gunicorn

# 全量安装(异步应用:FastAPI/Starlette)
pip install gunicorn uvicorn fastapi

📝 2. 示例应用

创建 main.py(以 FastAPI 为例,兼容同步/异步):

from fastapi import FastAPI
import os
import time

app = FastAPI()

# 测试接口:返回当前进程ID
@app.get("/pid")
async def get_pid():
    return {
   
   "worker_pid": os.getpid()}

# 测试接口:模拟进程崩溃(验证容错)
@app.get("/crash")
async def crash():
    os._exit(<
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值