题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
题目思路
这题跟上一题跳台阶题目很像,但又有所区别,这里的话不仅仅最多跳两阶,而是最多跳n阶。
思路一:
那么我们可以根据上题类比的写出f(n)=f(n-1)+f(n-2)+…+f(0);这式子说明我们可以(自顶向下)先跳1阶,2阶,…,n阶。当然这里f(0)=1,跳n阶一次完成。类似的我们可以写出f(n-1)=f(n-2)+f(n-3)+…+f(0);和上式结合,我们立马可以得出f(n)=f(n-1)+f(n-1)=2*f(n-1),从而得出我们第一个思路的方法代码。
思路二:
首先我们确定的是最后的台阶,第n阶我们是肯定要到达(也就是跳到过这台阶上)的,但第1阶到第n-1阶台阶是否跳到过时不一定的,有两种情况(跳到过or没有),那么我们可以得出这里面的情况就是2的n-1次情况,每个台阶都存在于两种情况。从而得出我们第二个思路的方法代码。
代码
思路一:
class Solution {
public:
int jumpFloorII(int number) {
if(number==1)
return 1;
if(number==2)
return 2;
int sum=2;
for(int i=3;i<=number;i++)
{
sum*=2;
}
return sum;
}
};
思路二:
class Solution {
public:
int jumpFloorII(int number) {
return pow(2,number-1); //2的n-1次
}
};