LeetCode - 103. binary-tree-zigzag-level-order-traversal

思路

广度优先遍历。
维护一个 Queue,首先将根节点加入到 Queue 中。
维护两个计数器,numsOfThisLevel:记录本层的节点数, numsOfSonLevel:记录下一层的节点数。
维护一个标志位 needReverse,初始置为false。
维护一个外层 List<List>,和一个 内层的 List。
循环,当 Queue 不为空时:

  1. 取出一个节点,把它的 val 加入内层List。
  2. 当它的左节点不为空时,将它的左节点加入到队列中。并且下层的节点数 + 1;
  3. 当它的右节点不为空时,将它的右节点加入到队列中。并且下层的节点数 + 1;
  4. 判断内层 List 的大小是否已经等于了本层节点数。如果等于,判断是需要翻转内部 List。
    那么就把 内层 List加入到外层 List 中,然后新建一个内层 List。
    并且将两层的计数器,都下移一层(numsOfThisLevel = numsOfSonLevel; numsOfSonLevel = 0)。
    将标志位 needReverse 置为 !needReverse.

复杂度分析

假设树有 n 个节点。

  • 时间复杂度O(n),遍历整棵树。
  • 空间复杂度O(n),空间复杂度取决二叉树的节点数。

代码

public static List<List<Integer>> levelOrder(TreeNode root) {
       List<List<Integer>> ans = new ArrayList<>();
        if (root == null) return ans;
        Queue<TreeNode> nodes = new LinkedList<>();
        List<Integer> nums = new ArrayList<>();

        nodes.offer(root);
        int numsOfThisLevel = 1;
        int numsOfSonLevel = 0;
        boolean needReverse = false;

        while (!nodes.isEmpty()) {
            TreeNode node = nodes.poll();
            nums.add(node.val);
            if (node.left != null) {
                nodes.offer(node.left);
                numsOfSonLevel++;
            }
            if (node.right != null) {
                nodes.offer(node.right);
                numsOfSonLevel++;
            }
            if (nums.size() == numsOfThisLevel) {
                if (needReverse) {
                    Collections.reverse(nums);
                }
                ans.add(nums);
                nums = new ArrayList<>();
                numsOfThisLevel = numsOfSonLevel;
                numsOfSonLevel = 0;
                needReverse = !needReverse;
            }
        }

        return ans;
   }
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值