AI实战营:通用视觉框架OpenMMLab底层视觉与MMEditing

本文介绍了图像超分辨率的原理和不同类型,包括基于深度学习的SRCNN、FSRCNN、SRResNet等模型,以及使用对抗生成网络的SRGAN和ESRGAN,这些方法在提升图像细节和真实感方面取得进展。此外,还探讨了视频超分辨率技术,如EDVR和可变形卷积的应用。
摘要由CSDN通过智能技术生成

目录

图像超分辨率 Super Resolution     ​​​

深度学习时代的超分辨率算法

卷积网络模型SRCNN FSRCNN SRResNet

Super-Resolution CNN, SRCNN, 2014

Fast SRCNN 2016

SRResNet 2016

对抗生成网络介绍Ganerative Adversarial Network 

基于GAN的模型SRGAN与ESRGAN

SRGAN2017

Enhanced SRGAN 2018

视频超分辨率Video Super Resolution


  • 图像超分辨率 Super Resolution     ​​​

    • 图像超分辨率:根据从低分辨率图像重构高分辨率图像
    • 图像超分辨率的目标:     
    •  超分辨率的类型:
    • 单图超分的解决思路

    • 经典方法:稀疏编码Sparse Coding
      • 稀疏编码的缺点:
    • 深度学习时代的超分辨率算法

      • 基于卷积网络和普通损失函数        
        • 使用卷积神经网络,端到端从低分辨率图像恢复高分辨率图像
        • 代表算法:SRCNN与FSRCNN
      • 使用生成对抗网络
        • 采用生成对抗网络的策略,鼓励产生细节更为真实的高分辨率图像
        • 代表算法:SRGAN与ESRGAN
    • 卷积网络模型SRCNN FSRCNN SRResNet

    • Super-Resolution CNN, SRCNN, 2014

      • SRCNN模型功能划分
        • 第一层:特征提取
        • 第一层的卷积核
        • 第二层:非线性映射
        • 第三层:图像重构
        • SRCNN的训练
        • SRCNN的性能
        • SRCNN的速度问题
    • Fast SRCNN 2016

      • 转置卷积扩大特征图尺寸
      • 缩小层和放大层
      • FSRCNN的优势
      • 转置卷积的缺陷
      • 次像素卷积Subpixel convolution
    • SRResNet 2016

    • 图像超分辨率中的损失函数 MSE Loss, Perceptual Loss
      • 感知损失 vs 均方误差
      • Mean Squared Error 均方误差
      • 感知损失
      • 特征重构损失函数
    • 对抗生成网络介绍Ganerative Adversarial Network 

      • 使用GAN生成图像
      • 使用GAN转译图像
      • GAN应用于超分辨率
      • 图像数据在高维空间中的分布
      • 用神经网络表示数据分布
      • 如何学习生成器网络
      • 对抗训练
      • GAN的优化目标
      • 基于多层感知器的GAN模型
      • Deep Convolutional GAN,DCGAN
      • GAN 应用于图像超分辨率        
  • 基于GAN的模型SRGAN与ESRGAN

    • SRGAN2017

      • SRGAN的训练
    • Enhanced SRGAN 2018

      • 使用RRDB模块替换残差模块
      • 使用RaGAN替换GAN
      • 使用非线性激活前的响应计算感知损失
        •  
      • ESRGAN的性能比较

      • ESRGAN修复经典游戏

  • 视频超分辨率Video Super Resolution

    • 利用多帧进行超分
    • 视频复原的典型流程
    • EDVR 

    • 可变形卷积Deformable Convolution
    • 用于对齐的可变形卷积
  • BasicVSR
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值