今天看了这么一道题:有一位警长,抓了三个逃犯。现警长决定给他们一次机会。他拿出
3顶黑帽子,两顶白帽子,然后往这三个逃犯头上每人戴了一顶帽子,每个逃犯只能看到另外
两个逃犯帽子的颜色,不能看到自己帽子的颜色,而且不能进行通讯,不能进行讨论,只能靠
自己的推理推出来,如果猜出来了,放一条生路,否则处死。
警长先问第一逃犯,结果第一逃犯猜错了,被杀掉了。
警长问第二个逃犯,结果还是猜错了,同样被杀掉了。
警长再问第三个逃犯,结果第三个逃犯猜对了。
说明一下,每个逃犯在回答问题时,其他逃犯是听不到的。
为什么第三个一定能猜中,请你给出解释。
刚开始思考时我也陷入了其中的陷阱里了,一心想从逃犯的心理和黑白帽的概率上进行排
除,从而找到最优解.但是过了不久发现其实完全是没有必要的.答案其实很简单,但是往往是
我们自己把问题复杂化了:3个人2顶白帽子,就说明了如果有2个人戴了白帽子,那么另一个人
肯定能知道自己是黑帽子(当然,此人存属白痴除外!^_^).第一个人死了,就说明了另外2人不
可能都是白帽子.第2个人死了就说明了第3人头上不可能是白帽子(因为如果第3人头上是白帽
子,第2人肯定不会死).由此第三人肯定能猜中.
之所以一开始容易让人陷入无穷尽的概率思考中我想是因为我们在看题时忽略了3个事实:
1.逃犯不能看到自己帽子的颜色,而且不能进行通讯,不能进行讨论.每个逃犯在回答问题时,其他逃犯是听不到的.
2.逃犯1和2的死对事件的影响.
3.第三人肯定能猜中.
由1我们可以得知,无论逃犯1和2说了什么,对逃犯3都没有影响(因为根本不能交流,逃犯3不
可能知道他们说了什么).因此我们完全可以忽略逃犯们根据其他2人的帽子所做的推论.即使
他们推测的概率再大,也不可能是100%正确.所以我们获得的信息只有3个人不可能都是白帽
子.
在排除了概率可能后,由2可知,逃犯1的死只可能说明了其他2人不可能都是白帽子,而逃犯2的
死也只能说明了逃犯3只能是黑帽子.答案也就出来了.
可惜的是我们往往把3顶黑帽子也做为了其中一条线索,从而死卡着3人可能戴帽子颜色的概率
问题不放,久久不能跳出潜意识的圈子,如:可能的线索越多,求解越容易;概率越大,逃犯越容
易选择.其实,被这个问题套住很正常,我想一般人都会从概率的角度思考问题,但是在求解了
一段时间后,能不能换个角度看问题就是这道题的关键了.虽然我特讨厌该死的马哲,但是不得
不承认其中的辩证法思想还是很有效的,如果我们刚开始就能死死的抓住第三人肯定能猜中这
一线索,我们就可以把所有可能性小于100%的情况排除,那么剩下的还有什么线索呢?!呵呵.
相信只要能想通这一点,答案对于我们来说都很容易推断出来.千万不要陷入死胡同,只知道朝
一个方向走,虽然地球是圆的,迟早你能到达背后10米处不远的终点,但是换个走法,倒着走或
者转个180度再走不是更好么^_^.在遇到问题久久不能解决后,尝试着换种方法或者换个角度
重新看问题,或许能有意想不到的收获不是么.
3顶黑帽子,两顶白帽子,然后往这三个逃犯头上每人戴了一顶帽子,每个逃犯只能看到另外
两个逃犯帽子的颜色,不能看到自己帽子的颜色,而且不能进行通讯,不能进行讨论,只能靠
自己的推理推出来,如果猜出来了,放一条生路,否则处死。
警长先问第一逃犯,结果第一逃犯猜错了,被杀掉了。
警长问第二个逃犯,结果还是猜错了,同样被杀掉了。
警长再问第三个逃犯,结果第三个逃犯猜对了。
说明一下,每个逃犯在回答问题时,其他逃犯是听不到的。
为什么第三个一定能猜中,请你给出解释。
刚开始思考时我也陷入了其中的陷阱里了,一心想从逃犯的心理和黑白帽的概率上进行排
除,从而找到最优解.但是过了不久发现其实完全是没有必要的.答案其实很简单,但是往往是
我们自己把问题复杂化了:3个人2顶白帽子,就说明了如果有2个人戴了白帽子,那么另一个人
肯定能知道自己是黑帽子(当然,此人存属白痴除外!^_^).第一个人死了,就说明了另外2人不
可能都是白帽子.第2个人死了就说明了第3人头上不可能是白帽子(因为如果第3人头上是白帽
子,第2人肯定不会死).由此第三人肯定能猜中.
之所以一开始容易让人陷入无穷尽的概率思考中我想是因为我们在看题时忽略了3个事实:
1.逃犯不能看到自己帽子的颜色,而且不能进行通讯,不能进行讨论.每个逃犯在回答问题时,其他逃犯是听不到的.
2.逃犯1和2的死对事件的影响.
3.第三人肯定能猜中.
由1我们可以得知,无论逃犯1和2说了什么,对逃犯3都没有影响(因为根本不能交流,逃犯3不
可能知道他们说了什么).因此我们完全可以忽略逃犯们根据其他2人的帽子所做的推论.即使
他们推测的概率再大,也不可能是100%正确.所以我们获得的信息只有3个人不可能都是白帽
子.
在排除了概率可能后,由2可知,逃犯1的死只可能说明了其他2人不可能都是白帽子,而逃犯2的
死也只能说明了逃犯3只能是黑帽子.答案也就出来了.
可惜的是我们往往把3顶黑帽子也做为了其中一条线索,从而死卡着3人可能戴帽子颜色的概率
问题不放,久久不能跳出潜意识的圈子,如:可能的线索越多,求解越容易;概率越大,逃犯越容
易选择.其实,被这个问题套住很正常,我想一般人都会从概率的角度思考问题,但是在求解了
一段时间后,能不能换个角度看问题就是这道题的关键了.虽然我特讨厌该死的马哲,但是不得
不承认其中的辩证法思想还是很有效的,如果我们刚开始就能死死的抓住第三人肯定能猜中这
一线索,我们就可以把所有可能性小于100%的情况排除,那么剩下的还有什么线索呢?!呵呵.
相信只要能想通这一点,答案对于我们来说都很容易推断出来.千万不要陷入死胡同,只知道朝
一个方向走,虽然地球是圆的,迟早你能到达背后10米处不远的终点,但是换个走法,倒着走或
者转个180度再走不是更好么^_^.在遇到问题久久不能解决后,尝试着换种方法或者换个角度
重新看问题,或许能有意想不到的收获不是么.