回溯算法

回溯法其实也是一种搜索算法,它可以方便的搜索解空间。
回溯法解题通常可以从以下三步入手:
1、针对问题,定义解空间
2、确定易于搜索的解空间结构
3、以深度优先的方式搜索解空间,并在搜索的过程中进行剪枝
回溯法通常在解空间树上进行搜索,而解空间树通常有子集树和排列树。
针对这两个问题,算法的框架基本如下:
用回溯法搜索子集合树的一般框架:

Cpp代码
  1. void backtrack(int t){
  2. if(t > n) output(x);
  3. else{
  4. for(int i = f(n,t); i <= g(n,t);i++){
  5. x[t] = h(i);
  6. if(constraint(t) && bound(t)) backtrack(t+1);
  7. }
  8. }
  9. }
void backtrack(int t){
  if(t > n) output(x);
  else{
    for(int i = f(n,t); i <= g(n,t);i++){
          x[t] = h(i);
          if(constraint(t) && bound(t)) backtrack(t+1);
     }
  }
}


用回溯法搜索排列树的算法框架:

Cpp代码
  1. void backtrack(int t){
  2. if(t > n) output(x);
  3. else{
  4. for(int i = f(n,t); i <= g(n,t);i++){
  5. swap(x[t],x[i]);
  6. if(constraint(t) && bound(t)) backtrack(t+1);
  7. swap(x[t],x[i]);
  8. }
  9. }
  10. }
void backtrack(int t){
  if(t > n) output(x);
  else{
    for(int i = f(n,t); i <= g(n,t);i++){
          swap(x[t],x[i]);
          if(constraint(t) && bound(t)) backtrack(t+1);
          swap(x[t],x[i]); 
    }
  }
}


其中f(n,t),g(n,t)表示当前扩展结点处未搜索过的子树的起始标号和终止标号,
h(i)表示当前扩展节点处,x[t]第i个可选值。constraint(t)和bound(t)是当前
扩展结点处的约束函数和限界函数。constraint(t)返回true时,在当前扩展结点
x[1:t]取值满足约束条件,否则不满足约束条件,可减去相应的子树。bound(t)返
回的值为true时,在当前扩展结点x[1:x]处取值未使目标函数越界,还需要由backtrack(t+1)
对其相应的子树进一步搜索。
用回溯法其实质上是提供了搜索解空间的方法,当我们能够搜遍解空间时,
显然我们就能够找到最优的或者满足条件的解。这便是可行性的问题, 而效率可以
通过剪枝函数来降低。但事实上一旦解空间的结构确定了,很大程度上时间复杂度
也就确定了,所以选择易于搜索的解空间很重要。
下面我们看看两个最简单的回溯问题,他们也代表了两种搜索类型的问题:子集合问题和
排列问题。
第一个问题:
求集合s的所有子集(不包括空集),我们可以按照第一个框架来写代码:

Cpp代码
  1. #include<iostream>
  2. using namespace std;
  3. int s[3] = {1,3,6};
  4. int x[3];
  5. int N = 3;
  6. void print(){
  7. for(int j = 0; j < N; j++)
  8. if(x[j] == 1)
  9. cout << s[j] << " ";
  10. cout << endl;
  11. }
  12. void subset(int i){
  13. if(i >= N){
  14. print();
  15. return;
  16. }
  17. x[i] = 1;//搜索右子树
  18. subset(i+1);
  19. x[i] = 0;//搜索左子树
  20. subset(i+1);
  21. }
  22. int main(){
  23. subset(0);
  24. return 0;
  25. }
#include<iostream>
using namespace std;

int s[3] = {1,3,6};
int x[3];
int  N = 3;
void print(){
   for(int j = 0; j < N; j++)
	if(x[j] == 1)
	   cout << s[j] << " ";
   cout << endl;
}

void subset(int i){
 	if(i >= N){
        print();
	    return;
	}

	x[i] = 1;//搜索右子树
	subset(i+1);
	x[i] = 0;//搜索左子树
	subset(i+1);
}

int main(){
  subset(0);
  return 0;
}



下面我们看第二个问题:排列的问题,求一个集合元素的全排列。
我们可以按照第二个框架写出代码:

Cpp代码
  1. #include<iostream>
  2. using namespace std;
  3. int a[4] = {1,2,3,4};
  4. const int N = 4;
  5. void print(){
  6. for(int i = 0; i < N; i++)
  7. cout << a[i] << " ";
  8. cout << endl;
  9. }
  10. void swap(int *a,int i,int j){
  11. int temp;
  12. temp = a[i];
  13. a[i] = a[j];
  14. a[j] = temp;
  15. }
  16. void backtrack(int i){
  17. if(i >= N){
  18. print();
  19. }
  20. for(int j = i; j < N; j++){
  21. swap(a,i,j);
  22. backtrack(i+1);
  23. swap(a,i,j);
  24. }
  25. }
  26. int main(){
  27. backtrack(0);
  28. return 0;
  29. }
#include<iostream>
using namespace std;

int a[4] = {1,2,3,4};
const int N = 4;

void print(){
	for(int i = 0; i < N; i++)
		   cout << a[i] << " ";
    cout << endl;
}

void swap(int *a,int i,int j){
  int temp;
  temp = a[i];
  a[i] = a[j];
  a[j] = temp;
}

void backtrack(int i){
	if(i >= N){
		print();
	}
	for(int j = i; j < N; j++){
		swap(a,i,j);
		backtrack(i+1);
		swap(a,i,j);
	}
}

int main(){
  backtrack(0);
  return 0;
}


这两个问题很有代表性,事实上有许多问题都是从这两个问题演变而来的。第一个问题,它穷举了所有问题的子集,这是所有第一种类型的基础,第二个问题,它给出了穷举所有排列的方法,这是所有的第二种类型的问题的基础。理解这两个问题,是回溯算法的基础.
下面看看一个较简单的问题:
整数集合s和一个整数sum,求集合s的所有子集su,使得su的元素之和为sum。
这个问题很显然是个子集合问题,我们很容易就可以把第一段代码修改成这个问题的代码:

Cpp代码
  1. int sum = 10;
  2. int r = 0;
  3. int s[5] = {1,3,6,4,2};
  4. int x[5];
  5. int N = 5;
  6. void print(){
  7. for(int j = 0; j < N; j++)
  8. if(x[j] == 1)
  9. cout << s[j] << " ";
  10. cout << endl;
  11. }
  12. void sumSet(int i){
  13. if(i >= N){
  14. if(sum == r) print();
  15. return;
  16. }
  17. if(r < sum){//搜索右子树
  18. r += s[i];
  19. x[i] = 1;
  20. sumSet(i+1);
  21. r -= s[i];
  22. }
  23. x[i] = 0;//搜索左子树
  24. sumSet(i+1);
  25. }
  26. int main(){
  27. sumSet(0);
  28. return 0;
  29. }
int sum = 10;
int r = 0;
int s[5] = {1,3,6,4,2};
int x[5];
int  N = 5;

void print(){
   for(int j = 0; j < N; j++)
	if(x[j] == 1)
	   cout << s[j] << " ";
   cout << endl;
}
void sumSet(int i){
	if(i >= N){
		if(sum == r) print();
	    return;
	}
	if(r < sum){//搜索右子树
	  r += s[i];
	  x[i] = 1;
	  sumSet(i+1);
	  r -= s[i]; 
	}
	x[i] = 0;//搜索左子树
	sumSet(i+1);
}

int main(){
  sumSet(0);
  return 0;
}

回溯法之二---8皇后问题

八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上.
问题分析:
第一步 定义问题的解空间
这个问题解空间就是8个皇后在棋盘中的位置.
第二步 定义解空间的结构
可以使用8*8的数组,但由于任意两个皇后都不能在同行,我们可以用数组下标表示
行,数组的值来表示皇后放的列,故可以简化为一个以维数组x[9]。
第三步 以深度优先的方式搜索解空间,并在搜索过程使用剪枝函数来剪枝
根据条件:x[i] == x[k]判断处于同一列
abs(k-i) == abs(x[k]-x[i]判断是否处于同一斜线
我们很容易写出剪枝函数:
Cpp代码
  1. bool canPlace(int k){
  2. for(int i = 1; i < k; i++){
  3. //判断处于同一列或同一斜线
  4. if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i])) return false;
  5. }
  6. return true;
  7. }
bool canPlace(int k){
	for(int i = 1; i < k; i++){
        //判断处于同一列或同一斜线
	   if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i])) 		       return false;
	}
	return true;
}

然后我们按照回溯框架一,很容易写出8皇后的回溯代码:
Cpp代码
  1. void queen(int i){
  2. if(i > 8){
  3. print();
  4. return;
  5. }
  6. for(int j = 1; j <= 8; j++){
  7. x[i] = j;//记录所放的列
  8. if(canPlace(i)) queen(i+1);
  9. }
  10. }
void queen(int i){
	if(i > 8){
		print();
		return;
	}
	for(int j = 1; j <= 8; j++){
	  x[i] = j;//记录所放的列
	  if(canPlace(i)) queen(i+1);
	}
}

整个代码:
Cpp代码
  1. #include<iostream>
  2. #include<cmath>
  3. using namespace std;
  4. int x[9];
  5. void print(){
  6. for(int i = 1; i <= 8; i++)
  7. cout << x[i] << " ";
  8. cout << endl;
  9. }
  10. bool canPlace(int k){
  11. for(int i = 1; i < k; i++){
  12. //判断处于同一列或同一斜线
  13. if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i]))
  14. return false;
  15. }
  16. return true;
  17. }
  18. void queen(int i){
  19. if(i > 8){
  20. print();
  21. return;
  22. }
  23. for(int j = 1; j <= 8; j++){
  24. x[i] = j;
  25. if(canPlace(i)) queen(i+1);
  26. }
  27. }
  28. int main(){
  29. queen(1);
  30. return 0;
  31. }

八皇后问题的非递归实现
这里给出的递归实现和上面的差不多,放在这里主要是为了和下面的非递归作对应,因为它们的变量相似。
递归实现:
#include " stdio.h "
#include
" stdlib.h "
#include
" time.h "

/**/ /* 记录当前的放置方案 */
int * x;
/**/ /* 皇后的个数N 和 方案数目 */
int n,sum = 0 ;
/**/ /* 检查参数所指示的这一行皇后放置方案是否满足要求 */
int Place( int );
/**/ /* 递归方法求取皇后放置方案*/
void Queen1( void );
/**/ /* 用户递归求取皇后放置方案的递归方法 */
void TraceBack( int );
/**/ /* 打印当前成功的放置方案 */
void PrintMethod( void );

void main( void )
{
long start,stop;
printf(
"input n: ");
scanf(
"%d",&n);
x
=(int *)malloc(sizeof(int)*n);
time(
&start);/**//*记录开始时间*/
Queen1();
time(
&stop);/**//*记录结束时间*/
printf(
"\nmethod total %d \n",sum);
printf(
"\nuse %d seconds \n",(int)(stop-start));
}


int Place( int r)
{
int i;
for(i=0;i<r;i++){
if(x[r]==x[i] || abs(r-i)==abs(x[r]-x[i]))
return 0;
}

return 1;
}


void TraceBack( int r)
{
int i;
if(r>=n){
sum
++;
/**//* PrintMethod(); */
}
else{
for(i=0;i<n;i++){
x[r]
=i;
if(Place(r)) TraceBack(r+1);
}

}

}


void PrintMethod( void )
{
int i,j;
printf(
"\nmethod %d\n",sum);
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(j==x[i]) printf("*");
else printf("#");
}

printf(
"\n");
}

}


void Queen1( void )
{
TraceBack(
0);
}

非递归实现:

#include " stdio.h "
#include
" stdlib.h "
#include
" time.h "

/**/ /* 记录当前的放置方案 */
int * x;
/**/ /* 皇后的个数N 和 方案数目 */
int n,sum = 0 ;
/**/ /* 检查参数所指示的这一行皇后放置方案是否满足要求 */
int Place( int );
/**/ /* 非递归的方法求取皇后放置方案 */
void Queen2( void );
/**/ /* 打印当前成功的放置方案 */
void PrintMethod( void );

void main( void )
{
long start,stop;
printf(
"input n: ");
scanf(
"%d",&n);
x
=(int *)malloc(sizeof(int)*n);
time(
&start);/**//*记录开始时间*/
Queen2();
time(
&stop);/**//*记录结束时间*/
printf(
"\nmethod total %d \n",sum);
printf(
"\nuse %d seconds \n",(int)(stop-start));
}


int Place( int r)
{
int i;
for(i=0;i<r;i++){
if(x[r]==x[i] || abs(r-i)==abs(x[r]-x[i]))
return 0;
}

return 1;
}


void Queen2( void )
{
int i,k;
for(i=0;i<n;i++)
x[i]
=0;
k
=0;
while(1){
if(x[k]>=n){
/**//* 如果当前第K行的放置位置超出了范围,那么检查该行是否为第0行
如果是第0行,说明所有的方案都已经遍历完毕,函数返回;否则回退到前一行
*/

if(k==0) break;
x[k]
=0; /**//* 下次遍历的初始位置 */
k
--; /**//* 返回上一行 */
x[k]
++; /**//*下一种放置方案*/
}

else if(!Place(k)){
/**//* 如果当前第K行的放置方案不满足要求,采取下一种放置方案*/
x[k]
++;
}

else{
if(k==(n-1)){
/**//* 如果已经是最后一行,那么表示已经成功得到一种放置方案*/
sum
++;
/**//* PrintMethod(); */
x[k]
=0; /**//*下次遍历的初始位置*/
k
--; /**//*返回上一行*/
x[k]
++; /**//*下一种放置方案*/
}
else
k
++; /**//* 否则开始配置下一行的皇后 */
}

}

}


void PrintMethod( void )
{
int i,j;
printf(
"\nmethod %d\n",sum);
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(j==x[i]) printf("*");
else printf("#");
}

printf(
"\n");
}

}

#include<iostream>
#include<cmath>
using namespace std;

int x[9];
void print(){
	for(int i = 1; i <= 8; i++)
		   cout << x[i] << " ";
	cout << endl;
}

bool canPlace(int k){
	for(int i = 1; i < k; i++){
            //判断处于同一列或同一斜线
	   if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i])) 
		   return false;
	}
	return true;
}

void queen(int i){
	if(i > 8){
		print();
		return;
	}
	for(int j = 1; j <= 8; j++){
	  x[i] = j;
	  if(canPlace(i)) queen(i+1);
	}
}

int main(){
  queen(1);
  return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值