VGGNet------超经典神经网络结构与PyTorch实现
在上文中详细介绍了经典神经网络 AlexNet,它为神经网络的发展打开了一片天地。VGGNet可以说是经典中的经典,它是所有学习深度学习的同学们都必须熟知网络。VGGNet是AlexNet的升级版,本文将详细介绍VGGNet的网络结构与相应的优缺点。
1、VGGNet网络结构
VGG有众多版本,主要包括VGG11、VGG11-LRN、VGG13、VGG16-1、VGG16-3和VGG19,首先我们先大题看一下VGG的立体结构。
从上图看,VGGNet与AlexNet相比好像除了增加了深度并没有太特别的地方,依然是使用卷积、ReLU、池化、全连接等。但是,我们通过它的网络细节就能发现他的高明之处,下图为VGGNet的网络结构图。
对比AlexNet网络结构,细心的同学会注意到以下几个点:
1、VGGNet基本上采用的都是3x3卷积核、2x2 MaxPooling,并没有出现AlexNet中的11x11卷积核、5x5卷积核、3x3 MaxPooling等较大卷积和池化操作。
2、VGGNet中是在卷积神经网络中使用1x1卷积核,见网络结构C中。1x1的卷积层的主要意义在于非线性变换和降维,在这里则是非线性变换。
3、VGGNet从网络深度中看确实超过了AlexNet,同时,VGGNet同样进过不同版本的实验也验证了增加网络深度可以提高性能,但是也验证了不断地叠加络深度并不能无限的提高性能,甚至还会出现退化。
2、VGGNet网络结构的优缺点
优点
- 网络结构简单,统一使用3x3卷积核、2x2池化,使网络结构也非常规整;
- 论文提出通过小尺寸滤波器(3x3)卷积层的组合代替大尺寸滤波器(如11x11、7x7等)卷积层,这样不仅可以减少参数还得到更好的性能;
- 使用1x1卷积核,NiN与GoogleNet均使用了此结构,这对以后的深度学习算法影响深远;
- 训练使用了Multi-Scale训练(多尺度训练)的方法,此方法不仅能增加很多数据量,同时对于防止模型过拟合有很不错的效果。
缺点
- 3个全连接层耗费了更多的计算资源,因此其训练速度也相对较慢;
- 由于网络深度的增加,VGG需要存储的参数也多,因此训练的模型相对较大;
3、VGGNet网络结构PyTorch实现
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = [
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
'vgg19_bn', 'vgg19',
]
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
class VGG(nn.Module):
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg11(pretrained=False, **kwargs):
"""VGG 11-layer model (configuration "A")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['A']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg11']))
return model
def vgg11_bn(pretrained=False, **kwargs):
"""VGG 11-layer model (configuration "A") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['A'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg11_bn']))
return model
def vgg13(pretrained=False, **kwargs):
"""VGG 13-layer model (configuration "B")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['B']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg13']))
return model
def vgg13_bn(pretrained=False, **kwargs):
"""VGG 13-layer model (configuration "B") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['B'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg13_bn']))
return model
def vgg16(pretrained=False, **kwargs):
"""VGG 16-layer model (configuration "D")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['D']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg16']))
return model
def vgg16_bn(pretrained=False, **kwargs):
"""VGG 16-layer model (configuration "D") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['D'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg16_bn']))
return model
def vgg19(pretrained=False, **kwargs):
"""VGG 19-layer model (configuration "E")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['E']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
return model
def vgg19_bn(pretrained=False, **kwargs):
"""VGG 19-layer model (configuration 'E') with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['E'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg19_bn']))
return model