前言
高阶Python系列文章是笔者想要突破自己目前的技术生涯瓶颈而作,不具有普适性。本文主要是介绍Python在数据结构和算法中常用的函数。这也是数据分析领域必备知识点。
也不是特地为了某些读者而作,想着提高自己的同时,能方便他人就更好了。懂分享的人,一定会快乐!
常用的四个模块应该是:collections,heapq,operator,itertools。其中,collections是日常工作中的重点/高频模块。
另外,正确学习这些技巧的姿势应该是:打开电脑,实现数遍,尝试不同解决办法和编程方式。
注:所有代码在Python3.5.1中测试。
collections模块
- deque
from collections import deque
"""学习固定长度的deque"""
q = deque(maxlen=5) # 创建一个固定长度的队列,当有新记录加入已满的队列时,会自动移除最老的记录。
q.append(1) # 添加元素
"""学习不固定长度的deque,从队列两端添加或弹出元素的复杂度为o(1)."""
q = deque() # 创建一个无界限的队列,可以在队列两端执行添加和弹出操作
q.append(1) # 添加元素
q.appendleft(2) # 向左边添加一个元素
q.pop() # 弹出队列尾部的记录
q.popleft() # 弹出队列头部的记录
- defaultdict
用于创建有多个value对应一个key的字典。比如创建value可重复(list存储)的该字典:dic = {“a”: [1, 2 , 2, 3, 3], “b”: [1, 2]}。或创建value不可重复(set存储)的该字典:dic = {“a”: { 1, 2, 3}, “b”: {1, 2} }
from collections import defaultdict
d_list = defaultdict(list) # list
d['a'].append(1)
d['a'].append(2)
d['a'].append(2)
d['a'].append(3)
d['a'].append(3)
d_set = defaultdict(set) # set
d['a'].add(1)
d['a'].add(2)
d['a'].add(3)
- OrderedDict
OrderedDict内部维护了一个双向链表,会根据元素加入的顺序来排列键的位置。一个新加入的元素被放在链表的末尾,然后,对已存在的键做重新赋值但不会改变键的顺序。作用:严格控制元素初始添加的顺序。
from collections import OrderedDict
d = OrderedDict() # 实例化
d['a'] = 1
d['b'] = 2
- Counter
作用:统计可哈希的序列中元素出现的次数。(可哈希:一种特性,具备该特性的对象在其生命周期内必须不可变。在Python中,有整数、浮点数、字符串、元组。)
from collections import Counter
test = ['a', 'a', 'b', 'c', 'b', 'd', 'a', 'c', 'e', 'f', 'd'] # 测试集
word_count = Counter(test) # 调用,传参
print(word_count) # 输出:Counter({'a': 3, 'b': 2, 'c': 2, 'd': 2, 'f': 1, 'e': 1})
word_count.most_common(3) # 获取出现频次前3的单词
word_count['a'] # 获取某个单词的频次
Counter还可以将两个数据集进行数学运算。如下:
from collections import Counter
test = ['a', 'a', 'b', 'c', 'b', 'd', 'a', 'c', 'e', 'f', 'd'] # 测试集
test1 = ['a', 'b', 'c', 'd', 'e', 'f'] # 另一测试集
a = Counter(test) # 统计test
b = Counter(test1) # 统计test1
print(a) # 输出:Counter({'a': 3, 'b': 2, 'c': 2, 'd': 2, 'f': 1, 'e': 1})
print(b) # 输出:Counter({'b': 1, 'a': 1, 'f': 1, 'c': 1, 'd': 1, 'e': 1})
c = a + b # 统计两个数据集
print(c) # 输出:Counter({'a': 4, 'b': 3, 'c': 3, 'd': 3, 'f': 2, 'e': 2})
c = a - b # Counter({'a': 2, 'b': 1, 'c': 1, 'd': 1})
c = b - a # Counter()
heapq模块
heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[k] <= heap[2k+1] and heap[k] <= heap[2k+2]。为了比较不存在的元素被人为是无限大的。堆最重要的特性就是heap[0]总是最小的那个元素。
- nlargest/nsmallest
import heapq
"""简单的数据集"""
numbers = [11,22,33,-9,0,5,-11] # 测试数据集
heapq.nlargest(3,numbers) # 获得前3最大的元素
heapq.nsmallest(3,numbers) # 获得前3最小的元素
"""复杂的数据集"""
people_info = [
{'name': "guzhenping", 'age':19, 'score':90},
{'name': "xiao gu", 'age':21, 'score':100}
]
max_age = heapq.nlargest(1,people_info, key=lambda people_info: people_info['age']) # 获取最大年龄的个人
min_score = heapq.nsmallest(1, people_info, key=lambda info: info['score']) # 获取最低分数的个人
- heapify
作用:对元素进行堆排序。保证最小的元素在为第一个元素。
import heapq
nums = [11, 22, 33, 44, 0, -1,20,-12] # 测试数据集
heapq.heapify(nums) # 转化成堆排序的列表
print(nums) # 输出:[-12, 0, -1, 22, 11, 33, 20, 44]。
heapq.heappop(nums) # 弹出最小的元素,同时让第二小的元素变成第一小
- heappop/heappush
heappop和heappush是在堆排序中常用的方法。heapq.heappop()作用:将第一个元素(最小的)弹出,然后将第二小的元素放在第一个。heapq.heappush()是插入操作。两者复杂度o(logN),N代表堆中元素的数量。
以一个优先级队列进行举例:
import heapq
class PriorityQueue:
def __init__(self):
self._queue = []
self._index = 0
def push(self, item, priority):
heapq.heappush(self._queue, (priority, self._index, item))
self._index += 1
def pop(self):
data = heapq.heappop(self._queue)
print(data)
return data[-1]
if __name__ == '__main__':
q = PriorityQueue()
q.push("guzhenping", 1)
q.push("xiao gu", 3)
q.push("xiao ping",1)
# 打印测试
while len(q._queue) != 0:
print(q.pop())
结语
随便整理一下,发现内容已经很多了。如果你没有见过上述的常用函数,可以好好学习一下。
这里还有很多没说的内容:
- operator.itemgetter()和operator.attrgetter()的使用,以及同lambda函数的区别。
- collections中的namedtuple()、ChainMap()的使用
- …
希望以后能再继续。
2年Python开发经验,但是,还有很多原理不懂。以前的不求甚解,变成了现在的知识瓶颈。所以,来啊,一起进阶Python啊!