uvaoj 103 Stacking Boxes 最长上升子序列LIS

题目的描述比较长,读起来比较费力气,但题意还是很简单的。就是现在有k个盒子,每个盒子都是n维的,定义盒子a可以嵌套在盒子b里,当且仅当,a盒子的n维的数字都比b盒子的小,在这里盒子的维数可以随意变换,其实相当于将维数的数字排序。现在有k个盒子,求出这k个盒子能嵌套的最大数目,并打印出来这个序列。先将每个盒子的维数数字排序,然后再将k个盒子按照第一个不同的维数排序,这样就保证了出现在后边的盒子一定不能嵌套在前边的盒子里。因为要记录这个序列,所以使用n^2的最长上升子序列的算法,注意这个序列打印的是盒子在原来给定的序列的位置,所以排序时要记录原来的位置,可以使用结构体来实现。
代码如下:
/*************************************************************************
	> File Name: 103.cpp
	> Author: gwq
	> Mail: gwq5210@qq.com 
	> Created Time: 2014年10月28日 星期二 19时31分05秒
 ************************************************************************/

#include <cmath>
#include <ctime>
#include <cctype>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <cstring>

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <sstream>
#include <iostream>
#include <algorithm>

#define INF (INT_MAX / 10)
#define clr(arr, val) memset(arr, val, sizeof(arr))
#define pb push_back
#define sz(a) ((int)(a).size())

using namespace std;
typedef set<int> si;
typedef vector<int> vi;
typedef map<int, int> mii;
typedef long long ll;

const double esp = 1e-5;

#define N 50

struct Node {
	int idx, w[N];
}node[N];

int n, m, dp[N], pre[N];

bool cmp(Node u, Node v)
{
	int idx = 0;
	while (idx < m && u.w[idx] == v.w[idx]) {
		++idx;
	}

	if (idx < m) {
		return u.w[idx] < v.w[idx];
	} else {
		return false;
	}
}

int check(int a, int b)
{
	int ret = 1;

	for (int i = 0; i < m; ++i) {
		if (node[a].w[i] >= node[b].w[i]) {
			ret = 0;
			break;
		}
	}

	return ret;
}

int main(int argc, char *argv[])
{
	while (scanf("%d%d", &n, &m) != EOF) {
		clr(dp, 0);
		clr(pre, -1);
		for (int i = 0; i < n; ++i) {
			for (int j = 0; j < m; ++j) {
				scanf("%d", &node[i].w[j]);
			}
			sort(node[i].w, node[i].w + m);
			node[i].idx = i + 1;
		}

		sort(node, node + n, cmp);

		for (int i = 0; i < n; ++i) {
			dp[i] = 1;
			pre[i] = -1;
		}
		for (int i = 1; i < n; ++i) {
			for (int j = 0; j < i; ++j) {
				if (check(j, i) && dp[i] < dp[j] + 1) {
					pre[i] = j;
					dp[i] = dp[j] + 1;
				}
			}
		}

		int ans = 0;
		int pos = 0;
		for (int i = 0; i < n; ++i) {
			if (ans < dp[i]) {
				pos = i;
				ans = dp[i];
			}
		}

		printf("%d\n", ans);
		stack<int> s;
		s.push(node[pos].idx);
		int u = pre[pos];
		while (u != -1) {
			s.push(node[u].idx);
			u = pre[u];
		}
		printf("%d", s.top());
		s.pop();
		while (!s.empty()) {
			printf(" %d", s.top());
			s.pop();
		}
		printf("\n");
	}

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值