模式识别
文章平均质量分 84
ExcaliburZZ
每篇博客都应该拥有精美的排版
展开
-
模式识别教材书选择填空期末汇总
给不爱复习的Z同学。参考教材书:《模式识别》吴陈等编著,机械工业出版社。第2章(P47)2.11 选择题 (1)影响聚类算法结果的主要因素有(BCDBCDBCD) A.A.A. 已知类别的样本质量 B.B.B. 分类准则 C.C.C. 特征选取 D.D.D. 模式相似性测度 (2)聚类分析算法属于(AAA) A.A.A. 无监督分类 B.B.B. 有监督分类 C.C.C. 统计模式识别方法 D.D.D. 句法模式识别方法 (3)影响 K−K-K−均值聚类算法原创 2021-05-29 20:46:37 · 2737 阅读 · 9 评论 -
模式识别——第9章 决策树
9.1 什么是决策树决策树是一种监督学习。一棵决策树由分支结点、分支和叶结点构成。每个内部结点表示一个属性上的测试,每个分支代表一个测试输出,每个叶结点代表一种类别或类的分布。优点:可读性好,具有描述性,有助于人工分析; 效率高。一次构建,重复使用,每次预测的最大计算次数不超过树的深度。9.2 属性选择的几个度量1. 期望信息或信息熵表示任意样本集的纯度,样本内部的混乱程度与熵值成正比。设 DDD 为数据集合(含有 s=∣D∣s=|D|s=∣D∣ 个样本),类别属性具有 mmm 个不原创 2021-04-24 17:16:44 · 521 阅读 · 0 评论 -
模式识别——第10章 支持向量机
给不爱复习的张同学。10.1 支持向量10.1.1 线性可分D0D_0D0 和 D1D_1D1 是 nnn 维欧式空间中的两个点集。如果存在 nnn 维向量 WWW 和实数 w0w_0w0,使得所有属于 D0D_0D0 的点 XiX_iXi 都有 W⋅Xi+w0>0W\cdot X_i+w_0>0W⋅Xi+w0>0,而对于所有属于 D1D_1D1 的点 XjX_jXj 则有 W⋅Xj+w0<0W\cdot X_j+w_0<0W⋅Xj+w0<0,原创 2021-04-22 21:45:01 · 268 阅读 · 0 评论 -
模式识别期末复习题
模式识别期末复习题选择感觉部分答案不对,自行判断。给不爱复习的张同学。一、判断1、影响层次聚类算法结果的主要因素有:计算模式距离的测度、聚类准则、类间距离门限、预定的类别数目。(√√√)2、欧式距离具有平移不变性和旋转不变性。(√√√)3、马式距离既具有欧式距离的特性,还具有尺度缩放不变性和不受量纲影响。(√√√)4、线性判别函数的正负和数值大小的几何意义是:正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。(√√√)5、积累势函数法较之于 H—原创 2021-04-20 10:16:23 · 3538 阅读 · 2 评论 -
模式识别——第3章 判别函数法
只是应试的个人笔记,不全不详细。统计模式识别{聚类分析法(非监督)判别函数法(有监督){几何分类法(确定性事件){线性判别函数法非线性判别函数法统计决策方法(贝叶斯决策方法,随机事件)统计模式识别\left\{\begin{aligned}&聚类分析法(非监督)\\&判别函数法(有监督)\left\{\begin{aligned}&几何分类法(确定性事件)\left\{\begin{aligned}&线性判别函数法\\&非线性判别函数法\e原创 2021-04-13 13:22:13 · 1138 阅读 · 0 评论 -
模式识别作业题1
@TOC给定一个含3个样本的样本集合,编程实现计算其各点之间的各类距离设三个样本点为 (1,0),(0,1),(1,1)。%Sample pointsX=[ 1 0; 0 1; 1 1];[m,n]=size(X); %m为样本个数,n为维度Manhattan distance(City Block Distance)图中,红色为曼哈顿距离,绿色为欧氏距离,蓝色和黄色为等价的曼哈顿距离。用以标明两个点在标准坐标系上的绝对轴距总和。二维中两点(x1,y1),(x2,y2)(x_1,y_1)原创 2021-03-31 14:45:49 · 1251 阅读 · 0 评论