题目一:
写一个函数,输入n,求斐波那契数列的第n项。
解法一:
采用递归,但是时间效率不好,原因是许多节点值都进行了多次重复计算。
long long fibonacci1(int n) {
if(n <= 0) return 0;
if(n == 1) return 1;
return fibonacci1(n-1) + fibonacci1(n-2);
}
解法二:
采用循环,时间效率好,是使用的方法。
long long fibonacci2(int n) {
if(n <= 0) return 0;
if(n == 1) return 1;
long long arr[2] = {0,1};
int i = 0;
for(i = 2;i <= n;i++) {
long long tmp = arr[0] + arr[1];
arr[0] = arr[1];
arr[1] = tmp;
}
return arr[1];
}
扩展题目:
通过斐波那契数列还可以完成许多其他类似问题,例如:
题目一:
一只青蛙一次可以跳上一级台阶,也可以跳上两级台阶。求该青蛙跳上一个n级台阶总共有多少种方法。
题目二:
我们可以用2x1的小矩形横着或者竖着去覆盖更大的矩形。请问用8个2x1的小矩形无重叠的覆盖一个2x8的大矩形,总共有多少种方法。