SSL P1409【树】哈夫曼树(三)

Description

根据传送的一串字符出现的频率,设置其相应的哈夫曼编码

Input

一串字符

Output

哈夫曼编码(按照中序遍历输出各个字母和编码,中间用冒号分开)

Sample Input

XINNNMM
Sample Output

N:0
M:10
X:110
I:111
哈夫曼树:
1.记录每个字符出现的次数,并且记录这个字符。
2.去重复字符。
3.建哈夫曼树。
4.访问输出。
注意:
相同大小时不是排字符而是排它在序列中出现的先后顺序。

type
  arr=record
         data:longint;
         l,r:longint;
         addr:longint;
         zm:char;
      end;
var
     f,a:array [0..101] of arr;
     g:array ['A'..'Z'] of longint;
     i,j,t,n,sum,x:longint;
     s:string;

procedure mp(k:longint);
var
  i,j:longint;
  t:arr;
begin
   for i:=1 to k-1 do
       for j:=i+1 to k do
           if (a[i].data>a[j].data)
           or ((a[i].data=a[j].data) and (a[i].addr>a[j].addr))
              then begin
                      t:=a[i];
                      a[i]:=a[j];
                      a[j]:=t;
                   end;
end;

procedure vist(o:string;t:longint);
begin
   if f[t].data=0 then exit;
   vist(o+'0',f[t].l);
   vist(o+'1',f[t].r);
   if f[t].l=0 then
      if f[t].r=0 then writeln(f[t].zm,':',o);
end;

begin
   readln(s);
   for i:=1 to length(s) do inc(g[s[i]]);
   for i:=1 to length(s) do
       if g[s[i]]>0 then
          begin
             inc(n);
             a[n].data:=g[s[i]];
             f[n].data:=g[s[i]];
             a[n].addr:=n;
             a[n].zm:=s[i];
             f[n].zm:=s[i];
             g[s[i]]:=0;
          end;
  t:=n+1; i:=n;
  while i>1 do
        begin
           mp(i);
           f[t].data:=a[1].data+a[2].data;
           f[t].l:=a[1].addr;
           f[t].r:=a[2].addr;

           a[2].zm:=a[i].zm;
           a[i].zm:=chr(200);
           a[1].zm:=chr(200);

           a[1].data:=f[t].data;
           a[1].addr:=t;

           a[2].data:=a[i].data;
           a[2].addr:=a[i].addr;

           inc(t); dec(i);
     end;
    vist('',t-1);
end.
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值